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FOREWORD

This is the final report of a study made under Contract NAS 1-141614 for i
NASA-Langley Research Center, Hampton, Virginia. Mr. Robert D. Witcofski of i,

the Aeronautical Systems Division at NASA-Langley Research Center was tech- I:
nical monitor for the study. The report presents results of work performed |

during the 14 month period, October 1976 through November 1977. Volume I _
contains Sections i through 6; Volume II contains Sections 7 through i0, and

I

Appendixes A through G.

The Lockheed-California Company was the prime contractor to NASA and
the work was performed in the Commercial Advanced Design Division at Burbank,

California. In addition, important segments of the work which required

special expertise were subcontracted to the following organizations. The
individuals named were principal contributors.

LOCKHEED-CALIFORNIA CO_ANY

G. Daniel Brewer, Study Manager

s Robert E. Morris, Project Engineer

George Davis, Structures

• Edward Versaw, Fuel Systems

Roger Jensea, Weights

Roy Adamson, Propulsion

Dalen Horning, DOC Analysis

LOCKHEED MISSILES AND SPACE COMPANY, INC.

George Cunnlngton, Jr., Tank Insulation

Richard Parmley, Tank Insulation

Jorgen Skogh, Tank Stress Analysis

Richard Cima, Heat Transfer Ana]ysis
E

AIRESEARCH DIVISION OF THE GARRETT CORP.

James C. Riple, Engine Pump and Fuel Control System

b, Carl F. Baerst, LH2 Engine Design
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ROCKETDYNE DIVISION OF ROCKWELL INTERNATIONAL

Greg Garmong, Engine Fuel Supply System

William R. Eissell, Boost Pump

Ron Tobin, Fuel Feed Lines
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STUDY OF FUEL SYSTEMS FOR

LH2-FUELED SUBSONIC TRANSPORT AIRCRAFT

G. D. Brewer, R. E. Morris, G. W. Davis, E. F. Versaw

G. R. Cunnlngton, Jr., J. C. Riple, C.F. Baerst, G. Garmong,

Lockheed-Callfornla Company
Burbank, California

SUMMARY

Concern for the potential short supply of petroleum-base fuels has led to
a series of studies sponsored by NASA whlch have explored the technolosical

aspects and established the potential of using liquid hydrogen (LH2) for fuel
in advanced cormmerclal transport aircraft. Previous studies have investigated
most promising methods of producing hydrogen, processes for liquefying the gas,

aircraft configurations, and air terminal design and operations as they would

be affected by introduction of LH2-fueled aircraft.

The present study was directed at exploring the design problems presented

by the fuel system of a representative LH2-fueled transport. This encompasses
everything required in th_ aircraft to contain, Control, or handle the fuel.

Although hydrogen fuel systems have been developed for space mission applica-
tions, the requirements for aircraft are so different in regard to mission dur-

. ation, system life, operating cycles, and safety aspects that entirely different

design problems are presented. The experience with LN2 systems in the U.S. Space
Program did, however, provide valuable reference data and serve as a point of
departure in establishing designs for some of the aircraft components.

An aircraft design from a previous study performed by Lockheed for NASA

(Reference i) was used as basis for developing the fuel system design. The air-

craft is shown in the frontispiece. It carries 400 passengers i0 190 km (5500
n.mi$ at a cruise speed of Mach 0.85. A design guideline was that the tech-

nology should represent initial operational capability in 1990-1995.

In order to provide maximum competence in all aspects of the study
Lockheed-Callfornla Company was supported by Lockheed Missiles and Space
Company, Inc., the California and Arizona AiResearch Divisions of the Garrett

Corporation, and the Rocketdyne Division of Rockwell International in the per-
formance of the work.

An initial task in the study was to define an efficient engine cyclej one

which would take best advantage of the unique properties of hydrogen. Five

ideas for exploiting the advantages offered by the large heat capacity and the
low temperature of hydrogen were explored. These included precompressor cooling,
compressor interstage cooling, cooling of the turbine cooling air, regenerative

Lockheed Missiles and Space Company

AiResearch Divisions of the Garrett Corporation

Rocketdyne Division of Rockwell International

1
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heating of the hydrogen fuel by the core exhaust, and use of a_ expansion cycle

in connection with exhaust heat regeneration to provide power for engine acces-

sories. In addition, two levels of turbine rotor inlet temperatures, 1482 and

1760°C (2700 and 3200°F), were evaluated, each in conJunctlon with an appropri-

ate range of values of cycle pressure ratios and fan pressure ratios to permit

selection of a preferred set of those parameters. All of this work was based on

a definition of engine colaponent performance and efflciencies agreed upon as

representative of technology which can be developed for operational use by 1990.

The selected engine cycle was based on the following characteristics at

sea level static, standard day conditions.

Rotor Inlet Temperature 1482°C (2700°F)

Cycle Pressure Ratio 35

Fan Pressure Ratio (tip) 1.594

Bypass Ratio 10.25

The design uses hydrogen to cool the turbine cooling air, the engine oil ando
ECS air, and also provides for heating the fuel to 677 K (1219°R) in an exhaust

regenerator before injection into the combuster.

The engine fuel supply system and the engine delivery and control system

received significant attention. The engine fuel supply system takes the LH 2
out of the tanks and delivers it to the inlet of the engine high pressure pump.

It consists, in main, of the boost pumps, valves, and fuel delivery lines. For

reasons of reliability, each of the four tank compartments in the airplane is

provided with a cluster of three boost pumps. The pumps are three-stage, varlable

speed, centrifugal designs which are driven by 270 Vdc motors. They are

designed to be llne replscable units (LRU'_ for ready removal from the air-

plane in case they ma]iunction.

Fuel delivery lines are stainless steel, 2.54 cm dis x 0.406 mm wall !

(i.0 in. x 0.016 in.). The lines are enclosed i_ 3.81 cm (1.5 in.) of closed I

cell foam insulation, which is itself contained in a 10.16 cm dia. x 0.406 mm i

wall (4 in. x 0.016 in.) aluminum tube which serves as a vapor barrier and

provides mechanical protection.

The engine delivery and control system consists of the engine-mounted high

pressure pump, heat exchangers, and the fuel control system, all mounted in the

engine nacelle. The engine pump is a two-stage centrifugal design, shaft

driven at a fixed speed ratio. It is designed to take saturated liquid hydrogen

(3 NPSH) at _45 kPa _50 psia) and provide a flow of 0.454 kg/sec tl.O ib/sec)

at a pressure rise of 4813 kPa (698 psi). Its design rotational speed is

50 000 rpm.
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• The engine fuel control system employ• electronic control circuitry and has a

flowmeter and a flow-modulating and shut-off valve located just ahead of the

engine combustor to control fuel flow to the engine. These units are located
downstream of the heat exchangers to avoid lag in response which would other-

wise result from the capacities of the heat exchangers.

Fuel subsystems which were designed include the following: Fueling/_efuel,
Vent and Pres•urizatiun, Fuel Transfer, and Fuel Jettison. The desig-_ ,,_ _e-

ments of each of these subsystems was established, then the designs _'-c_ crea.'d

so weights and costs could be estimated and operationql requirements a_sess_d.

A_l ezte_sive _nalltiral stady was carried out to determine the best design

for the fuel containment system. This consisted of investigation of vario,ls

tank structural concepts and 15 different tank insulation Jystems. The struc-

tural investigation included analysis of both integral and nonlntegral tank
designs, plus several parametric studies involving consideration of

• dome shape
• pressure stabilization

• pressure level

• design life

• tank support method•

The tank insulation study consisted of a concept screening phase in

which 15 designs were investigated, followed by •election and more detailed

examination of four preferred candidates, two each for integral and nonintegral
tank structural designs. These four candidates were each treated as a basis for

a separate airplane design so the comparison and final choice could be made in

terms of parameters of primary interest to aircraft operators.

Tank insulation concepts which originally entered the concept screening

phase included representatives of all conceivable types incl_dlng active sys-
tems dependent on reasonably hard vacuum [0.0133 Pa (I x i0- Torr)] ; some which
were self evacuating by a process of cryopumping an included gas; and those which

were completely passive.

The fuel containment system which ranked highest in the overall rating

scheme was a design which used an integral tank and an insulation system con-

sisting of tiny, hollow borosilicate spheres (microspheres) contained in an

annulus enclosing the tank which is pumped to a soft vacuum. The design pres-
sure in the annular space is 13.33 Pa (0.I Torr). A very close second choice

in the final evaluation was a design which also used an integral tank but the

insulation system was a wrap of closed cell plastic foam around the tank, with

a vapor barrier then wrapped around that to prevent air from penetrating the
foam. These two insulation systems were so close in the ratings it is recom-
mended both be further developed. The nonintegral tank designs were eliminated

because of their inherent tendency to be both heavier and thicker.

3
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Following the design of all elements of the aircraft LH2 fuel system it

was required that a comparison be made between the LH2 and a corresponding
Jet A-fueled aircraft. To do this it was necessary to generate a Jet A engine

design which matched the component performance used in the subject LHp engine.

This was accomplished and LH2-fueled ant Jet A-fueled aircraft design_ were
then established so the comparison of their characteristics could be made. A

summary of some of the significant parameteL= is presented in the following
table.

Ratio

/Jet A_

LH2 Jet A _ LH 2 ]

Gross weight kg 168 829 232 056
(ib) (372 200) (511 600) 1.37

Operating empty wt kg 103 305 107 363
(lb) (227 750) (236 700) 1.04

Block fuel weight kg 21 621 72 365

(ib) (47 670) (159 540) 3.35

Thrust per engine N 135 000 184 900
(IO) (30 350) (41 567) 1.37

Wing area m2 296.8 380.3
(ft2) (3195) (4093) 1.28

Span m 51.7 58.5

(ft) (169.6) (191.9) 1.13

Body length m 65.7 60.0
(ft) (215.6) (197.0) 0.914

Aircraft price $106 43.39 44.53 1.03

DOC* c/seat km 0.869 0.907

(C/seat n.ml.) (1.609) (1.679) 1.04

Energy utilization kJ/seat km 636 759

(Btu/seat n.mi) (1118) (1334) 1.19

*Calculated for baseline prices of each fuel; $5.69/GJ ($6/106Btu) for LH 2 and
$4.74/GJ ($5/106 Btu) for synthetic Jet A, assuming both fuels age made
from coal.

The LH2-fueled design is superior in nearly every parameter. In fact,
the advantages are greater than those calculated originally as presented in

Reference I. This is _ue primarily to a more conservative appraisal of some

engine component efficiencies, reflected in engines using both fuels; however,

through exploitation ot the properties of hydrogen, the specific fuel con-

sumptlon of the LR2 design was nearly restored to its original value. At the
baseline price for synthetic Jet A, a price differential amounting to an

additi_lal $1.59 per GJ ($1.67/106 Btu) can be paid for LH2 fuel and still
provide equal DO(:.

A list of 12 items is recommended for development of technology or to

provide information needed in order for LH2-fueled aircraft to become a
viable possibility. The items are arrange_ in order of priority according tc
scheduling requirements. Development of an aircraft tank and insulation

system and LH2 .umps is considered top priority.
4
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NOMENCLATURE
I

NOTE: Computations in this analysis were performed in U.S.

Customary units and then converted to S.I. units.

AR - Aspect Ratio

ATA = Air Transport Association

BPR = Bypass Ratio

CPR = Cycle Pressure .Ratio

DOC = Direct Operating Cost

E = YounE's Module', of Elasticity (compression)
C

E t = Young's Modules of Elasticity (tension)

ECS = Environmental Control System

, FAR = Fedecal Air Regulation

FCS = Fuel Containment System

fg = Fiberglass

, FN = Net Thrust

FPR = Fan Pressure Ratio

Ft = Ultimate fiber stress, tension
• U

H = Head in feet

HC - Honeycomb

HP = High Pressure

H.P.EXT = Horsepower Extraction

1 = Integral

IGV = Inlet Guide Vanes

IOC = Initial Operational Capability

Jet A = Convention_l Hydrocarbon fuel

KEAS - Knots Equivalent airspeed

L/D = Lift-to-Drag ratio

LH 2 = Liquid Hydrogen

LHV = Fuel Lower Heating Value

LP = Low Pressure

M = Mach Number

MD = Design Math Number
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NOMENCI,ATURE (Continued)

N = Rotational speed, rpm

NI = Nonintegral

NPSH = Net Positive _Jction Head

OPR _ Overall Pressure Ratio

OEW = Operating Empty Weight

P = Pressure

PLA = Positive Low Angle of Attack

PT2 = Average Fan Face Total Pressure

PTo = Freestream Total Pressure

Q = Heating rate or Volumetric flow rate in gpm

, QEC = Quick Engine Change Nacelle

RIT = Rotor Inlet Temperature

S = Wing Reference Area

SLS = Sea Level Stn*Ic

TOGW = Takeoff Gross Weight

T/W - Thrust to Weight Ratio

TCA = Turbine Cooling Air

TIT = Turbine Inlet Temperature

VJP = Primary exhaust jet velocity

VJD = Fan Duct exhaust Jet velocity

Vo = Flight velocib

Vr = Takeoff rotate Velocity

Vs - stall Velocity
I

w = Flow rate

= Engine corrected airflow

a &P2m

Wpo d = Engine pod weight

W/S = Wing Loading = Aircraft weight
wing area

ZFW - Zero Fuel Weight

- Angle of Attack

- (PSIA/14.7)
6p 2 - Delta r 2 PT2

6
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NOMENCLATURE (Continued)

° 0T2 = Theta T2 = TT2 (°K/28g.2)

q = efficiency

p = density

= heat exchanger effectiveness
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i. INTRODUCTION

As a result of serious concern regarding the potential short supply of
petroleum-base fuels, in 1973 the National Aeronautics and Space Administra-

tion instigated a program to investigate alternate fuels for conwnercial

transport aircraft.

Liquid hydrogen (LH2) , liquid methane (LCH4), and synthetic Jet A
(synjet), all manufactured from coal and water, are leading altecnate fuel

candidates. To date, attention has been focused primarily on liquid hydrogen

and on synjet, assuming the synthetic jet fuel would have the same properties
as the present fuel for commercial airliners, Jet A or Jet A-I. Aircraft
designs based on use of both of these alternate fuels have been created and

compared (Reference I), and the facilities, equipment, and operations needed

at representative major air terminals to service liquid hydrogen-fueled air-
craft have been studied (References 2 and 3).

The LH2-fueled aircraft design from the previous study (Reference I)
was a conceptual design in which advanced technology features were incorpo-

rated representing an initial operational capability in the 1990 decade.
The aircraft was sized to carry 400 passengers I0 190 km (5500 n.mi.) at a

cruise speed of Mach 0.85. Necessarily, many assumptions were mad concern-

ing the characteristics of the LH2-fueled engine, the fuel containment system,
the engine fuel supply system, and other elements of the complete aircraft
fuel system.

In the present work, attention was focused on precisely those items so

that a more realistic evaluation of the potential of a hydrogen fueled trans-

port aircraft could be obtained. The objectives of this study were as
follows:

• Define the characteristics of a preferred design of fuel system for

the specified LH2-fueled transport aircraft.

• Establish the size, weight, cost and performance of the LH2-fueled
aircraft using the final fuel system design.

• Compare the LH2-fueled aircraft with an equivalent technology Jet A-
fueled design.

• Identify related research and technology development requirements

for the LH2 fuel system.

An outline of the approach taken in performing this study is described
in Section 2.

1978023142-016



2. TECHNICAL APPROACH

2.1 Team Organization

The wide scope of technical expertise required to define adequately a

practical fuel system for a liquid hydrogen-fueled aircraft led to formation

of a team, the members of which were selected for their competenae in speci-

fied technical areas. Lockheed-Callfornla Company reached agreement with

. the following companies to participate in the study on a subcontract basis

to provide special skills and innovative thinking in the areas indicated:

• Lockheed Missiles and Space Company, Inc. - For analysls, design,
and evaluation of cryogenic insulation systems, and for specialized

tank structural analysis

• Airesearch Divisions of the Garrett Corporation - For analysis and

design of an advanced design LH2-fueled turbofan engine, a fuel con-

trol system, pumps and other specific components

• Rocketdyne Division of Rockwell International - For analysis and

• design of the LH 2 engine fuel supply system, and for boost pump
design

This team provided an ideal combination of basic knowledge and familiarity

with the reference aircraft design, plus experience with technology developed

in the U.S. Space Program on cryogenic fuel systems in general, and use of

LH 2 in particular.

2.2 Work Plan

A schematic representation of the study work plan is shown in Figure I.

The work was performed in four phases. Phase I involved compilation of input

data needed in the remainder of the study. These items are described in
Section 3.

Phase II, System Studies, was the focus of the principal effort of the

study. In this phase, the designs of the LH2-fueled turbofan engine, the

engine fuel supply system, the fuel subsystems, and the fuel containmenu sys-

tem were established. In essence, these tasks involved examining the require-

ments, originating design concepts for evaluation, and choosing preferred

, designs for each of these elements of the fuel system of an LH2-fueled air-
craft. In addition, a comparable design of Jet A-fueled turbofan engine was

also established to provide a basis for equivalent comparison of aircraft

operated with the respective fuels.

1978023142-017



• !

1978023142-018



Phase III was an evaluation of the fuel system d_sign which resulted

from the work of Phase II. Drawings of the engine ft,-L supply system, the

pressurization/vent system, and the fueling/defuel system, plus principal

• components of each of these, were prepared so weight, reliability, mainte-
nance, and operational requirements could be assessed.

Four designs of fuel containment systems (tank stlucture, insulation

system, and support structure) were selected from 15 candidates originally

con._ived and studied. These four selected designs were evaluated using the

Lockheed Aircraft System Synthesis Evaluation Technique (ASSET) computer

program to establish the potential of each in terms of aircraft size, weight,

performance, and cost. Direct operating cost (DOC) was the principal mea-
sure of merit used in selecting the final preferred desigh.

The characteristics of the aircraft with the preferred fuel containment

system, which also used the LH 2 engine and fuel system designs from Phase II,
were compared with those of an equivalent technology Jet A-fueled aircraft.

The Jet A design was subjected to the same optimization procedure using ASSET

as the LH2-fueled _esign so that the comparison would be on an equitable |
basis.

Phase IV consisted of summarizing the results of the work and preparing

• the final report. A recommended research and technology development program
for critical LH 2 fuel system elements was formulated as a part of this effort.

ii }
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3. STUDY GUIDELINES ND INITIAL DATa

Information required to perform analyses of the LH2-fueled engine a:'J
fuel system components was generated or assembled as an initial step in the

program. This work included reaching agreement with NASA on specific guide-
lines and requirements to be met; compiling basic data from Reference 1 on

the baseline aircraft into a convenient package; generating sensitivity

factors so that the benefit or liability of changes in key aircraft param-
eters could be assessed, and thus provide help in guiding design decisions;

and finally, formulating a procedure for calculating direct operation cost
(DOG) for the subject aircraft which would reflect a reasonable approxima-
tion of current airline practices, and which would also account for differ-

ences between LH2-fueled and conventionally fueled aircraft.

3.1 Guidelines and Requirements

The guidelines and requirements which were established for use during
the study are listed in Table i. These items were either originally speci-

fied by NASA as a basis for the study, or were perceived during the early

stages of the program as being necessary for validity and consistency of
results.

v

3.2 Basic Data

Basic information on the reference LH2-fueled aircraft, and its design
mission, which was needed to establish a starting point for the fuel system

design requirements and analysis was derived, for the most part, from Refer-
ence I. Some additional information was generated by making special runs of

the ASSET computer program, and by separate analyses. In all, the following
items were assembled and transmitted to all study team members and to the

NASA Technical Monitor as preliminary data:

• Drawing CL 1317-I-I, General Arrangement - LH2 M 0.85, 400 PAX,
I0 190 km (5500 n.mi.)

• Drawing CL 1317-i-4, Engine Feed System - LH2 Subsonic Transport
(preliminary draft)

• Drawing CL 1317-I-5, Fueling/Vent System - LH2 Subsonic Transport
(preliminary draft)

• Design Mission Fuel Flow Schedule (shown in Appendix A).

12
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TABLE I.- GUIDELINES AND REQUIREMENTS

• Baseline aircraft: Final design in Reference I: 400 passengers,

I0 190 km (5500 n.ml.) range, Mach 0.85 cruise speed. See Figure 2.

Initial Operational Capability: 1990 - 1995

Baseline fuel costs:

LH2 = $5.69 per GJ ($6 per 106 Btu = 31¢/ib)

Synjet = $4.74 per GJ ($5 per 106 Btu = 9.2¢/±b = 62.2¢/gai)

DOC basis: !

1967 ATA equations updated to 1976 cost experience and modified to _

more accurately reflect airline practice, as well as differences

resulting from use of alternate fuels. Assume production of
350 aircraft and 3600 engines.

Evaluation criteria:

• DOC to be final measure of merit. All concepts must meet safety,
reliability, maintainability, and operational requirements.

• Safety:

Equal to or better than conventionally fueled commercial transport.

Design criteria:

Meet all applicable or anticipated regulatory requirements
including FAR 25.

• LH2 Turbofan Engine Thrust and Fuel Flow

• Fuel Flow Envelope - LH2 Turbofan

• Design mission flight profile

• Lockheed LH2 engine characteristics, component efflclencies, and
installation factors (inlet recovery, installation drag, bleed air
requirements, power extraction requirements).

13
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3.3 Sensitivity Factors

. Sensitivity factors were generated for the reference LH2-fueled airplane
to provide a basis for evaluation of the effect of changes from the baseline

design. For example, in the study of the LH2 engine design, a given option
may have offered a few percent reduction in specific fuel consumption (SFC),

but at the expense of an increase in inert weight. Sensitivity factors were

a means of evaluating the net benefit which might be realized by incorporating
that option in the design of the engine. Note that the sensitivity factors

were used merely as an evaluation procedure to assist in screening attractive

candidates. Evaluation of final design concepts was made by incorporating

appropriate data in the ASSET aircraft synthesis program.

The sensitivity factors, or exchange ratios as they are sometimes called,
were established by using the ASSET computer program to define optimized
vehicles for each of a series of deviations from the nominal value of items

like specific fuel consumption (SFC), vehicle inert weight (Wi), and thick-
ness of fuel tank insulation system. The results were then plotted vs various

airplane characteristics so the slope of the curve through the design point

represented the sensitivity of those characteristics to small changes in the
parameter being studied.

• An example of this process is presented in Table 2 and Figure 3. The
effect of I0 percent and 20 percent changes in SFC, both above and below the

nominal value, on takeoff gross weight (TOGW), fuel weight (Wf), operating

• empty weight (OEW), manufacturer's empty weight (MEW), engine size, airplane
cost, and direct operating cost (DOC) were all evaluated. The aircraft

represented by each column in Table 2 are real in the sense tlmt they have

been sized using the ASSET program so that they represent a minimum gross
weight design to perform the required mission, and that they meet all the

specified design constraints.

The results as plotted in Figure 3 illustrate the effect changes in

SFC would have on TOGW, OEW, Wf, and DOC. The slope of the curve at the
design point, shown for each case, is the sensitivity factor. It is accurate
in representing the effect on the various airplane characteristics of small

deviations in the subject parameter. If large deviations are contemplated,
their effect must be read from the curves, or a separate evaluation must be

performed.

Similar data are tabulated and plotted in Table 3 and Figure 4 to illus-
trate the effect changes in inert weight of the aircraft would have on certain

characteristics assuming the design has not been frozen. This assumption

allows desIpn characteristics of the aircraft such as wing loading and thrust-

to-welght ratio to be changed to accommodate the inert weight variations in
the most efficient manner.

15
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TABLE 2. - EFFECT OF CHANGE IN SPECIFIC FUEL CONSUMPTION

(Reference SFCcruise = 0.203 (kg/hr)/daN (0.199 hl_br/ib))

SFC Basis 80% 90% Reference 110% 120%

TGGW kg 16_ 440 169 467 177 672 186 717 196 510

(ib) (358 120) (373 610) (391 700) (411 640) (433 230

Fuel wt. kg 21 287 24 400 27 946 31 792 35 929

(ib) (46 930) (53 880) (61 610) (70 090) (79 2101

OEW kg I01 242 105 iii 109 810 115 008 120 660
(ib) (223 200) (231 730) (242 090) (253 550) (266 010

MEW kg 92 106 95 894 I00 498 105 592 III 135
(ib) (203 060) (211 410) (221 560) (232 790) (245 010

Thrust per N 116 677 121 748 127 619 134 114 141 142

Engine (ib) (26 230) (27 370) (28 690) (30 150) (31 7301

Cost/aircraft ($106) 38.96 40.25 41.81 43.53 45.39

DOC ¢/S km 0.862 0.922 0.990 1.063 1.143

(¢/S n.ml.) (1.597) (1.707) (1.833) (1.969) (2.116_

(% of ref.) 87.1 93.1 I00 1.07 1.15

TABLE 3. - EFFECT OF CHANGE IN INERT WEIGHT VARIATION

-9 072 -4 536 +4 536 +9 072

Inert Wt. kg(ib) (-20 000) (-I0 000) Reference (+I0 000) (+20 000

TOGW kg 159 306 168 918 177 672 187 365 197 304
(ib) (351 210) (372 400) (391 700) (413 070) (434 980

Fuel wt. kg 26"150 27 238 27 946 29 039 30 218
(ib) (57 650) (60 050) (61 610) (64 020) (66 620]

DEW kg 93 240 I01 763 109 810 118 410 127 169
(ib) (205 560) (224 350) (242 090) (261 050) (280 360

MEW kg 83 983 92 474 I00 498 109 062 117 789
(ib) (185 150) (203 870) (221 560) (240 440) (259 680

Thrust per N 114 453 121 347 127 619 134 603 141 720

!Engine (Ib) (25 730) (27 280) (28 690) (30 260) (31 8601

Cost/aircraft ($106) 35.77 38.88 41.81 44.90 48.02

DOC ¢/S km 0.908 0.952 0.990 1.033 1.079

(¢/S n.ml.) (1.681) (1.763) (1.833) (1.914) (1.998_
Q

(% of ref.) 91.7 96.2 I00 104 109
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Figure 3, - Sensitivity of CL 1317-1 aircraft to changes

in specific fuel consumption.
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Sensitivity factors for these two parameters, SFC an_ Wi, in addition to

the effect of variation in thickness of fuselage tank insulation systems and
the resulting influence this would have an fuselage length, were the primary

" tools needed to evaluate design or concept trade-offs throughout Phase II.

The following are some of the specific trade-off relationships which were

developed for application during this part of the program. (Note that these

sensitivity relationships were derived on the basis of U.S. Customary units.
If SI units are employed, constant_ and coefficients in the equations will
require reevaluation.)

3.3.1 Sensitivity of DOC to engine weight, 3FC, and maintenance cost. - The

following procedure permitted trade-offs to be made of engine cycles or concepts
in which, for example, a more complex, heavier engine mighL deliver a reduced

SFC. To use this evaluation method, it w_s necessary that preliminary estimates

5e made of the installed SFC, weight and maintenance requirements of the proposed
engine relative to equivalent values for the baseline engine.

DOC = K .89 + 0.II Malntbl)

where:

¢
" DOC is evaluated in

S n.mi.

. K = 1.8334 +7

Maint
= Estimated maintenance manhours and material relative to the

Maintbl baseline engine based on complexity, operating temperatures,
pressures, etc.

W -W = Change in weight of the proposed engine(s) or propul-

prop proPb I sio" system compared to the following baseline values_

FsLs(installed) = 28 694 lb per engine

Weight (for 4 engines):

Engines 22 141 Ib

Exhaust (including thr,_t rev.) 2006 Ib

. Inlets 2558 ib

Nacelles 6559 lb

Start system 33 686 ib
B

thrust 4 x 28694Installed • = 3.41
weight 33686
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(Note that the proposed engine thrust level must be the same as the

baseline engine for a valid comparlson.)

= Estimated SFC of the proposed engine relative to values for

_'IrCbl the baseline engine.

The scaling limits of this method are: +15% SFC

-+4536 kg (+i0 000 ib) weight

3.3.2 Sensitivity of DOC to fuel pumping system power and weight. - This
trade-off was for purposes of assessing the relative benefit (or liability)

of weight vs power requirements of candidate pumping systems. ASSET vehicle

synthesis data were used, together with the baseline engine characteristics,

to obtain an approximation of the horsepower-weight trade-off of tank-mounted

' aircraft fuel pumping systems. It was assumed that the pumps were driven by

electric, hydraulic, or other suitable power source extracted from the engine

accessory drive. The approach used was to compare systems on the basis of the

incremental change in direct operating cost (DOC) as shown:

DOC = 3.22 _hp cruise + 7.75 [Wsystem + 6 _ hPmax ]105 _ 106

where:

¢
DOC is expressed in

S n.mi.

hPcruis e = total input horsepower to all pumps running during
cruise flight

W = total weight of pumping system including pumps, drives,

system installation, plumbing, etc.

6 _ hPmax = factor to account for the aircraft system installed weight
penalty to provide the necessary input power. This is
based on the total maximum horsepower of tank-mounted

pumps. !

Q
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EXAMPLE:

System

No. l No. 2 i

_ri_ _yp_ Electric Hydraulic {
"2 hp max 80 70

"2 hp cruise 50 40

Wt. pumps- ib 40 40

Wt. drives 58 90

Wt. installation 20 30

Wt. lines i00 120

W 218 280
system

7.75

" DOCsys No. 1 = 0.0000322 x 50 + 106 (218 + 6 x 80)

t

= 0.0016 + 0.00541 •

= 0.00702 ¢
S n.mi.

7.75

DOCsyq No. 2 = 0.000322 x 40 + (280 + 6 x 70)106

= 0.00129 + 0.00543

.- 0.00672 ¢
S n.mt.

System No. 2 has the lowest increment of DOC and would be favored over
No. i. However, since this evaluation does not address the important aspects ,

of reliability and maintenance, it can only be considered as a screening

D
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means to eliminate the least likely candidates or to measure the relative

impact of power consumption and weight trade-offs on the aircraft.

3.3.3 Sensitivity of DOC to volume and weight of fuel containment system. -

The various candidate tank insulation systems and tank structural concepts

offer trade-offs of thickness "_" (measured from inside surface of tank to

exterior surface of aircraft) and weight. As thickness varies, the aircraft

fuselage length must change to provide the required fuel volume within the

fixed fuselage cross section. The following procedure, and associated values

of influence coefficients, was derived from a matrix of ASSET cases which

were run to simulate all reasonable combinations of fuel containment system

thicknesses and weights. As noted earlier, all aircraft represented by the

combinations of thickness and weight in the matrix are real in that they are

sized to perform the design mission while meeting necessary design constraints.

I. Determine total fuel boiloff for the I0 190 km (5500 n.mi.) mission

for the insulation concept and thickness being evaluated.

I

2. Calculate the fuel tank volume required using the _ollowing
allowances:

Integral il
Baseline New I

Case Case il

• Ullage 2.00% 2.00%

• Net tank contraction due 0.90 0.90 I

i

to cooling*, plus expan- I

sion due to i

pressurization

• Structure and equipment 0.64 0.64

• Trapped and unussble fuel 1.60 1.60

Subtotal 5.14 5.14

• Boiloff:

Pressurant gas 1.00 As

Vented gas 2.56 Calculated

Total Allowance (percent) 8.70 5.14 + %

Boiloff

*where insulation is on outside of tank
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" I

PH2 (Sat. liq. at 21 psia)61 630

Total Vol/tank - 2 x Total allowance (%)
I+

100

For baseline case:

I

(Ref) - 61 630 4.325 ft3/Lank" 2 x 1.087 - 7746

3. From Figure 5, find the aircraft fuselage length (Lfus) knowing "t".

_. Calculate the installed weight of the total fuel containment system

(_Wfcs). Assume weight of forward tank is same as aft tank.

NOTE: Installed weight includes tank, tank supports, shell struc-

ture (nonintegral), insulation, adhesive, vapor barrier pro-
tective cover, etc. For nonintegral tanks add the weight

of the fuselage shell structure in the tank region and the

tank removal provisions. Assume forward tank shell specific

weight is the same.

5. Calculate DOC using the following equation:

DOC -- 1.8334 + 7.75 (_ Wfcs + _,WH2 _ 82 294 110 6

3540
+ - 224.3)

106 (Lfus

where:

1.8334 = Baseline aircraft DOC - ¢/S n.mi.

(fuel cost - $6/106 Btu)

7.75
Wt. influence coefficient

106
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Figure 5. - Fuselage length vs fuel containment system
thickness and tank volume.
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3540
= Length influence coefficient

106

224.3 = Fuselage length (feet) for baseline integral tank
(with t = 6.32 in.)

82 294 = _'Wfcs + _•WH2 for the baseline integral tank design

_WH 2 = Weight of tanked liquid plus bot|_ pressurization
and vented gas.

3.3.4 Sensitivity of DOC to aircraft ground losses. - The choice of fuel
containment concept is influenced by the fuel boiloff losses during tank

refueling and by the boiloff during the daily out-of-service periods. In
the LH2 Airport Requirements Study (Reference 2) the economic desirability
of collecting this vent gas for reliquefactlon was established. The follow-

ing method of analyzing the worth of capturing and reliquefying this ground
. boiloff hydrogen was derived to provide a basis for comparing competitive

fuel containment system concepts. The assessment is in terms of DOC.

Assumptions:
R

I. The vapor is returned via a vacuum jacketed collection header and

insulated surge tank to the hydrogen liquefier at a point just
upstream of heat exchanger X-8 (stream no. 56) as shown in Figure 7

of the report "Survey Study of the Efficiency and Economics of

Hydrogen Liquefaction" (Reference 4). It enters at a pressure of
103 to ii0 kPa (15 to 16 psla) and a temperature of approximately

70°K (126°R). It then passes through the heat exchanger and, in

turn, through the H2 flash and recycle compressors.

2. The cost of reliquefaction is assumed to consist of the cost of the

electric power at 2C/kWh used in recompression, and a prorated share

of the storage, distribution and plant costs using the discounted
cash flow (DCF) method of accounting described on page 45 of
Reference 2.

On th_s basis the estimated cost of reliquefaction is:

($/Ib)

Electric power 0.05

Share of plant costs 0.027

V

Total 0.077
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The cost of the original GH2 feedstock was, of course, included i_
the cost of the liquid hydrogen.

The effect of hydrogen boiloff losses on DOC of the baseline aircraft
with a utilization of 4000 hours/year is:

_WH 2 grnd.

_DOC grnd. = day x 3"75 x I0-6 ( ¢)Sn_mi.

where:

WH2 grnd. = total of all daily ground boiloff losses

3.4 Calculation of Direct Operating Cost

Direct Operating Cost (DOC) was used as a primary selection criteria

in evaluation of design options for the LH2 transport aircraft, and as a
basis for comparing the economic performance of liquid hydrogen fueled air-

craft of advanced design with that of conventionally fueled counterparts.
q

The 1967 ATA DOC equations (Reference 35) were used as a starting point

in the derivation of an improved method for calculating LH2 and Jet A air-
craft DOC. The 1967 ATA equations do not accurately reflect operation of

either current or advanced technology aircraft and therefore required con-
siderable modification. To provide a basis for reasonable evaluation of

DOC for the subject LH2 and Jet A aircraft, an extensive survey of airline
operational practices was made, actual CAB data analyzed, and Lockheed and
engine manufacturer's specialists consulted regarding probable maintenance

requirements of the LH2 aircraft. The information derived as a result of
this work wa_ used to formulate modifications to the 1967 ATA formulas in

terms of January 1976 dollars for international trunk operation.

3.4.1 Background. - The DOC elements, and variables which affect their eval-
uation as reflected in the standard ATA formula, are listed in Table 4.

The airline surveys involved a series of meetinzs with four major U.S.

air carriers to determine the elements which are of significance to them and

the parameters and methods which they conventionally use in determining P_'.

The following airline representatives cooperated in the investigation and
contributed valuable data and advice:
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TABLE 4. - COST ELEMENTS AND VARIABLES IN 1967 ATA FORMULAS

Evaluated as Functions of the

Element Following Variables

Crew cost GTOW

Fuel and oil Lbs fuel, fuel cost, non-revenue
flying

Maintenance

Airframe

Labor Airframe weight, speed, labor rate

Material Airplane cost

, Engine

Labor Thrust, labor rate

Material Engine cost

Burden Ratio of maintenance labor cost

• Insurance % of airplane cost

Deprec_atlon Cost of airplane, life, residual

American Airlines - Mr. Jack Graef

- Mr. Keith Grayson

Pan American World Airways - Mr. William Hibbs |
|

Trans World Airlines - Mr. Walt Sherwood

United Airlines - Mr. John Curry

The participation of these airlines was solicited to provide representa-

tion of a spectrum of route structures, operational procedures, and financial
practices.*

*It should be noted that each of the airlines consulted has its own method- i
ology for determining DOC according to its individual requirements. The

method and procedure described herein should not be construed as represent-
ing that of any one of the cooperating airlines. Rather, the method pre-

sented in this report is the result of an attempt by Lockheed to represent _•
nominal industry values, i

!
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Statistical analyses of 1973, 1975, and 1976 CAB airline operating data

were made in order to provide realistic parameters in addition to those pro-

vided by the airl_nes. Various statistical techniques, including muJtiple

regression, were used to identify trends in the data. The CAB data were also
used to identify and quantify variations between domestic and international

trunk operation, variations between airlines, and variations between types

of airframes and engines. The variations between 1973, 1975, and 1976 data
were used to evaluate and define trends and to provide escalation factors.

Consultations with both airframe and engine specialists were used to deter-

mine relative engine llfe, spares requirements, and maintenance values for

LH2 operation.

Evaluation of DOC for the subject aircraft study was performed within
the Lockheed ASSET computer program which was used to develop aircraft con-

figurations and mission performance, as well as cost data. Airframe and

engine costs were derived from detailed parametric formulas within _SSET using
values for aircraft and engine parameters which were developed for the sub-

Ject aircraft.

3.4.2 Parameters required for DOC evaluation. - The following paragraphs

present the basis for evaluation of the parameters involved in determination
of DOC for the subject study.

3.4.2.1 Weight: Weight is a primary factor in developing aircraft cost and
DOC. Formulas containing weight as a parameter are based upon weight-cost

relationships resulting from current technology aircraft. When advanced

materials such as composites are introduced, the historical welght-cost
relationships are no longer valid and must be modified. These modifications

were made by using weights equivalent to current technology aircraft rather

than calculated weights. Equivalent weights were used for welght-related

parameters such as density.

3.4.2.2 Aircraft cost: Airframe cost and schedule were based upon a five

aircraft development program and a 345-aircraft production for a total of
350 aircraft. A maximum production rate of four aircraft per month was used.
Most labor costs were estimated in terms of hours with applicable Lockheed-

California Company January 1976 direct and overhead rates applied. Warranty

costs and a profit of 15 percent were added,

Engine costs were based upon use of the engine in two separate aircraft

production programs requiring a total of 3600 engines.

Airframe and engine spare costs were estimated as a percentage of the engine

or airframe cost. These percentages were derived from curves provided by TWA
which relate percentage of spares to fleet size. A fleet size of 20 was selec-

ted: 12 percent was used for airframe; 29 percent was used for the conventional

28!
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engine, and 21 percent used for the LH2 engine. The reduction for the LH2
engines is considered appropriate because of an expected 30 percent increase

In life for engines using that fuel. Precedent for this assumption lies in
" experience usiL_ggas turbine engines fueled with natural gas to drive electri-

cal generators and compressors in pipeline installations (Reference 44). In

these applications with natural gas (85 percent methane) it has been observed
that engine life and maintenance requirements are both improved by about 20

to 25 percent compared to the same engines fueled with aviation kerosene.

Theoretical Justification for the additional improvement expected with

hydrogen stems from considerations such as (I) gaseous hydrogen and air mix

very rapidly and thoroughly in the combustion chamber, which results in a very
uniform temperature profile, thereby minimizing thermal stresses; (2) the very

low emissivity of H2/air combustion gases minimizes metal temperatures for a
given temperature of the working fluid; (3) there are no carbon compounds to

form coke or lacquer in the fuel lines, on the combustor walls, or in the
turbine section; and (4) there is no sulfur or any other impurity in the fuel
to cause either erosion or corrosion.

3.4.2.3 Mission characteristics: An average stage length (ASL) of

2187 nautical miles was selected from prior route studies. This agrees _ery
closely with Lockheed formulas for deriving ASL for an international route.

Block and fl_ght times were calculated in ASSET based upon the mission pro-
file for the ASL. Block time equals flight time plus ground time. A utiliza-

tion of 3993 block hours/year (10.9 block hours/day) is estimated from the

° Lockheed developed fomlula:

U = 2942.75 x (block time)0"191

3.4.2.4 DOC elements:

• Crew Cost. - An international crew cost of $450/block hour was esti-

mated from Lockheed-developed formula for 1973 domestic crew cost

times a percentage for international bonus and adjusted for infla-

tion from 1973 to January 1976. The formula and adjustment factors
were derived from CAB data.

DCC (1976) = 38.38 x ASL 0'12 x OEW 0"202

ICe (1973) = DCC (1973) x I.i0

, ICC (J_N 1976) = ICC (1973) escalated at 12.7Z/year
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Where

DCC = Domestic Crew Cost

ICC = International Crew Cost

OEW - Operating Empty Weight

• Fuel Cost. - Fuel costs were given by NASA (see Table I, Guidelines
and Requirements), assuming both fuels are produced from coal and
water in the 1990's.

LH2 - $5.69 per GJ ($6/106 Btu = 31¢/ib = 18.3¢/gai)

JET A = $4.74 per GJ ($5/I06 Btu = 9.2c/Ib - 62.2¢/gai)

Block fuel usage is calculated by ASSET.

A factor of 1.23 percent for nonrevenue flying was applied, based
upon average airline operations from CAB data.

• Maintenance Cost. - A maintenance labor rate of $9.00/hour was used

as representative of the rates reported by the airlines from the

airline survey. A maintenance burden factor of 2.27 was applied to

maintenance labor. The burden factor was developed from a selected
average for 1975 escalated at 3 percent per year to January 1976.

The correction factors for the various elements of maintenance are
summarized in Table 5.

• Insurance. - An average insurance rate over the llfe of the aircraft

of 0.304 is estimated from an LCC-developed formula.

Avg. Rate = (-1357.9 + 1359 x YearsO'OOl)/LIFE

• Depreciation. - Estimated average aircraft cost, including spares
less residual value, is divided by the estimated life of the aircraft.

A 4-percent residual value for wide body was derived from the airline

survey. The 16-year llfe is normal for current large aircraft.
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TABLE 5. - MAINTENANCE FACTORS FOR DOC CALCULATION

Maintenance Correction Factors

® ® ® @ TotalFactor
Maintenance Equiv. x ATA-to- LH2 Intntl Applied toX X =

Element Weight Actual Cmplxty DMSTC ATA Formula

Airframe

Labor

Jet A 1.408 0.52 1.0 1.07 0.783

LH2 1.388 0.52 1.02 1.01 0.788

Airframe (Uses (Incl.

Material cost) in cost)
Jet A - 0.68 - 1.07 0.728

LH2 - 0.68 - 1.07 0.717

Engine (Uses
Labor thrust)
Jet A - 0.62 1.0 _.07 0.663

. LH2 - 0.62 0.7532 1.07 0.50

Engine (Uses
Material cost)

• Jet A - 1.31 1.0 1.07 1.402

LH2 - 1.31 0.7382 1.07 1.035

@ - Airframe weight is used in airframe labor only. The equivalent
weight factor adjusts the weight of advanced technology materials

to an equivalent current technology weight.

- The ATA-to-actual ratio reflects a factor which must be applied to
the ATA formulas to adjust to actual experience on wide body air-

frames and high bypass engines.

- The LH2 complexity factor accounts for variations between a Jet A-
fueled aircraft and an LH2-fueled aircraft. A detailed maintenance
analysis of each subsystem indicated a net 2 percent Increase in air-

frame labor for the LH2-alrframe. Engine maintenance for the LH2 is
reduced 30 percent from the Jet A-englne maintenance for the same

reasons discussed previously to account for longer llfe with LH2
engines.

@ - The Internatlonal/domestlc adjustment is required because ATA-to-
actual factors were developed on domestic trunk operation only and

CAB data indicates a relatively higher cost for international
maintenance.
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4. LH2 ENGINE DEFINITION

The objective of the engine definition task was to e_tablish a viable
baseline concept for a liquid hydrogen-fueled transport engine considering the

requirements of the aircraft, i.e., mission profile and performance require-
ments, and the unique properties of the liquid hydrogen fuel. The work was

performed as follows:

• The first element of this task addressed a feasibility investigation
of various schemes to exploit the properties of hydrogen.

• The second element consisted of parametric engine investigations

oriented toward selecting cycle variables and the engine configura-

tion which minimized direct operating cost. The factors considered
in evaluating direct operating cost were specific fuel consumption

and engine weight.

• The third element of the engine definition task was the detailed

definition of the selected engine design. The definition included
determining engine performance throughout the flight envelope; weight

and geometry; scaling laws; engine estimated cost; noise and emission

levels; and operatin" limits and capabilities.

• The final element consisted of formulating a list of technology
development requirements.

It is appropriate to point out that this task was not originally identi-

fied as a major activity in the study. Although definition of an optimum

design of a LH2-fueled engine is a topic deserving of serious effort, it
served the purposes of the present study to limit the work to a preliminary

investigation. Accordingly, the results are presented with the reservation

that many of the design choices were made, necessarily, with less than

rigorous technical Justification. A much more comprehensive design study is

recommended to fully explore the potential of LH2 as a fuel for advanced
turbofan engines.

4.1 Feasibility Studies - Hydrogen Exploitation

The objective of this task was to determine if the unique properties
of hydrogen could be capitalized on to provide engine performance and/or

weight benefits. The concepts which were selected for evaluation Included:

• Compressor air precooling

• Compressor air intercooling
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c

• Cooling of turbine cooling air

• Regenerative fuel heating

• Expander cycle

4.1.1 Approach. - The approach used in the feasibility studies was to select

a turbofan cycle compatible wltll the requirements of the liquid hydrogen-

fueled transport and to investigate the effects of the selected concepts
on this baseline. Previous Lockheed work (Reference I) resulted in the defini-

tion of a turbofan cycle for a liquid hydrogen-fueled transport. Cheracter-

istics of this cycle are shown in Table 6. The data shown in Table 6 were

derived using AiResearch analysis and modeling t_chnlques and, therefore, differ

sligbtly from Lockheed results as reported in Reference I. AIResea_ch reviewed

this _ycle and found it to be generally consistent with technology projections
for 1990. The bypass ratio and fan pressure ratio selected appeared to be
high and low, respectively, but the detailed parameterics requi._d to select

optimum values were not completed until later in the study. Therefore, this

cycle was used as a baseline for the hydrogen exploitation feasibility studies.
The high bypass ratio and low fan pressure ratio had little or no effect on

the results of the feasibility studies.

TABLE 6. - BASELINE ENGINE

Maximum C]_"h

, i0 668 m
Takeoff (35 000 feet)

Parameter SLS, Std M = 0.85

Rotor inlet temperature, °C 1416 1379
(°F) (2580) (2514)

Cycle pressure ratio 35.2:1 41.13

Fan pressure ratio 1.51:1 1.634

Core pressure ratio 23.3:1 25.17

Nozzle-to-core-velocity ratio 1.022 1.17

Bypass ratio 12.95:1 13.0:!

Net thrust, N 127 664 26 689

. (ib) (28 700) (6 000)

Specific fuel consumption (kg/hr)/daN 0.096 0.2022
((lb/hr)/lb) (0.094) (0.1983)

t

Specific thrust, N/'kg/sec) 256 119
(Ib/(ib/sec)) (26.10) (12.14)
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Two notable changes were made to the cycle shown _n Table 6 during the

course of the feasibility studies. The first change adjusted the cycle for

the low temperature of the hydrogen fuel as it entered the combustor. The

_e¢ond change debited the cycle for the effects of turbine cooling air.

Cycle and performance characteristics associated with these changes are
shown in Table 7.

The effects of turbine cooling air were incorporated only for the inves-

tigation of the concept where compressor discharge air was cooled by the

hydrogen fuel before it entered the turbine blades. Since the analysis method

required evaluation of differential effects only, for all other concepts,
zero turbine cooling air was assumed, The Lockheed-defined cycle assumed

the use of sodium-potassium (NaK) fluid to cool the turbine. The NaK was

cooled by the hydrogen fuel.

TABLE 7. - BASELINE ENGINE CHARACTERISTICS

(Maximum Climb, i0 668m (35 00G ft), M = 0.85)

Adjusted
Adjusted for

Cycle and Performance for Fuel Turbine

Characteristics Temperature Cooling

°CRotor inlet temperature, 1379 1379

(OF) (2514) (2514) '

Bypass ratio 13:1 13:1

Fan pressure ratio 1.634:1 1.634:1

Core pressure ratio 25.17:1 25.17:1

Nozzle-to-core velocity ratio 1.19 I.i0

Fuel temperature to combustor, OK 50 50

(OR) (9O) (90)

Net thrust, N 26 689 26 689

(lb) (6000) (6000)

Specific fuel consumption, (kg/hr)/daN 0.2082 0.2129

((ib/hr)/Ib) (0.2042) (0.2088)

Specific thrust, N/(kg/sec) 120 112

(lb/(ib/sec)) (12.20) (11.47)

Horsepower extraction 125 125

Aircraft systems bleed extraction, % 4.1 4.1

Inlet total pressure recovery 0.991 0.991

Nozzle thrust coefficients 0.995 0.995 ,
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All concepts were evaluated at the initial cruise flight conditions of

i0 668m (35 000 feet), Mach 0.85. This flight condition determined engine

sizing and was also typical of the cruise condition where the majority of
. fuel is consumed.

The criteria used for evaluation of the concepts was direct operating

cost. The sensitivity of direct operating cost to changes in specific fuel
consumption and engine weight was based on a relationship presented in

Section 3.3. The relationship used in the engine study was:

[ SFC

7.75 (_englne weight) + I 332 _SFCbase - I)lO b
_DOC (%) = x I00

DOCbase

The change in specific fuel consumption was evaluated using a design

point thermodynamic routine which allowed the various concepts to be modeled.
Engine weight for the various concepts was determined by adding the weight

of the components associated with each concept to the baseline weight and

adjt,_ting the baseline weight for changes in airflow, bypass ratio and tur-
bine design considerations.

For all cycle investigations thrust, cycle pressure ratio, turbine
inlet temperature, ano fan pressure ratio were held constant. Specific thrust

, (FN/Wa) was held nearly constant by fixing the energy extraction of the low
pressure turbine. This was accomplished by specifying a constant jet nozzle

velocity ratio (Vcore/Vfan) in addition to the other constant parameters.
Holding specific thrust approximately constant allows the effects of the

various concepts to be observed independently of propulsive efficiency changes.
It should be noted that holding the jet nozzle velocity ratio and fan pressure

ratio constant does not hold specific thrust exactly constant, but it results

in only very minor changes in specific thrust and the analytical procedure
is greatly simplified. The jet nozzle velocity ratio selected was 1.19 which

was based on the original Lockheed cycle.

Installation effects that were included in the analysis were bleed and

horsepower extraction for aircraft systems, inlet total pressure recovery,

and exhaust system losses including fan scrubbing drag. Freestream cowl

drag and inlet spillage drag were not included. To a first approximation,
freestream cowl drag is a function of specific thrust and therefore, for this

analysis, _s a constant. Spillage drag at the design point condition is

insignificant.

" Other important assumptions inc]uded the temperature of the liquid hydro-

gen fuel at the fuel pump outlet, the specific heat of hydrogen, and the
temperature of the fuel into the combustor. The fuel pump outlet temperature

of 50°K (90°R) was calculated based on an assumed temperature rise through fuel
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system lines and the temperature rise across the engine high pressure fuel

pump. Over the range of temperatures encountered, the specific heat of

LH2 is not constant but can be approximated by a constant 3.5 Btu/ib/°R.
The fuel temperature into the combustor was assumed equal to the temperature
out of the last engine heat exchanger for all concepts except the expander

cycle. For that concept it was assumed equal to the temperature out of the
hydrogen expansion turbine, i

4.1.2 Compressor air precooling. - The concept incorporating compressor air

precooling is shown in Figure 6. An annular heat exchanger is required in I
the core stream in front of the compressor. Fuel would be routed to the }

heat exchanger, entering at a temperature of approximately 50°K (dOOR) and, after I
passing through the heat exchangel, to the burner at an increased tempera- 1_
ture. Precooling the compressor inlet air results in less compression work _

required and the benefit is a reduced gas generator size. A second benefit ix

is the fuel heating effect, As discussed, LH2 would typically enter the tom- !
bustor at 50°K (90°R) and part of the heat of combustion is required to heat the };,
fuel to compressor discharge temperature. The elevated temperature of the i

fuel at the heat exchanger outlet minimizes this penalty. The benefit achieved !

is limited by the effectiveness and the air side pressure drop of the heat

exchanger.

COMPRESSOR PRECOOLER

• / / //I //////'//1 I
il l/ i I i '/ i ill I/A I

i I
FAN I I

_ ._. __J
I

H2 FUEL

Figure 6. - Schematic of engine cycle with compressor

precooling with H2 fuel.
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The results of this investigation are shown in Figure 7 In terms of

specific fuel consumption versus precooler heat exchanger effectiveness and

precooler air side pressure drop, all for an exhaust nozzle veloclty ratio
of 1.19.

Preliminary heat exchanger design analysis indicated that an effective-

ness (H2 side) of 0.8 and air side pressure drop of 6 percent was feasible.
This combination results in a 1.86 percent improvement in specific fuel con-

sumption. Basic engine weight decrea&ed 29 kg (63 ib) but the heat exchanger

added 34 kg (75 ib). The net effect was an improvement in DOC of ]..33percent

Detailed heat exchanger design conducted later in the study indicated
a severe air side freezing problem. Recirculat_on of warm fuel was investi-

gated but did not solve the problem. Potential damage due to f_relgn object

ingestion was also identified as a serious problem associated with this
concept.

4.1.3 Compressor intercooling. - The potential performance improvement due
to intercooling the compressor air at an intermediate point in its compres-

sion process with the H2 fuel was evaluated. The benefit to the cycle was
expected to result from a reduction in core size due to compressor horse-

" power reduction per pound of core airflow and decrease in fuel flow due to

heating of the fuel. An offsetting effect, as with compressor precooling,
is the pressure drop on the air side of the intercooling heat exchanger.

' The cycle with compressor intercooling is illustrated in Figure 8. The
point in the compression process selected for the heat exchanger was chosen

as one giving approximately equal enthalpy rise in the compression process

The results of this study are presented in Figure 9 in terms of specific
fuel consumption _,e_us intercooling effectiveness and pressure drop, all
for an exhaust nozzle velocity ratio of 1.19.

Preilmlnary heat exchanger design indicated that an effectiveness (H2
side) of 0.8 and an air side pressure drop of 4 percent was feasible. This

combination results in a 1.0 percent improvement in SFC relative to the base-

line cycle. Basic engine weight decreased 18 kg (40 ib) but the heat exchanger
added 45 kg (i00 ib). The net effect was an improvement in DOC of 0.57 percent.

37

1978023142-045



_ C,,,I

o i

- [
0

LC,I

I \, _- 1_.

/ /i_t'/I I''l "Jr- _ _ 4--#0
_" > 0

,,o 4- ;

i._ U m r- i_I3 U

0 _ I-- 0

II _ _ I_l _ J
l,I

- X/I0 N ¢'_

0 0 _" ¢_,X_li_ i _ :ll

= d> /

E • _ 14 ;

_0 n II "- " _ _ .,.-i

° ° " - _1 ._'\
z - " _- <:11" o o'_

0 C_ "

(ql/Jq/ql) 3_S

L....... I i.... I _ i

I,IEP/"_ ' O.-IS38

1978023142-046



• HPC

I HPT LPT
I I
i , i

FAN I I I --
I I I

L,/,I_ " - _l
• I

H2 FUEL

, Figure 8. - Schematic of engine cycle with compressor
intercooling with H2 fuel.

4.1.4 Hydrogen cooling of turbine cooling air. - An evaluatio_ was made of

the potential benefit which might be derived from cooling the HP turbine

blade cooling air with the hydrogen fuel. Hydrogen cooling of the turbine

cooling air would reduce the quantity of turbine cooling air extracted from
the compressor and, simultaneously, would heat the hydrogen fuel.

A schematic of this concept is illustrated in Figure I0. Air for cool-

ing the turbine hub is extracted from the compressor and routed to the turbine

by conventional means. Hub cooling air is not cooled by the hydrogen as the
flow requirements are set by the pumping characteristics of the turbine disks

and not by heat transfer requirements. If there was no flow of cool air

through the cavities in front of or behind a disk, the air in the cavity
would quickly reach the temperature of the main stream. Th_s is due to a

significant recirculaticn between the cavity air that is pumped in a toroidal

flow pattern by the rotating disk and the high velocity main stream air. To
maintain the cavity air at an acceptable level, cool air must be introduced

into the cavity to avoid recirculation, or at least limit it. The quantity

required is set by the rotating flow process more than by the temperature

, of the air. If some reclrculation were allowed, cooling the cavity purge
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H 2 FUEL

I
: I

_ 4 HEAT 1.... TURBINE
'-- EXCHANGER I BLADEI I
I l I COOLING AIR

I

FAN NOZZLE

" I
FAN I.. _ --s

TURBINE HUB COOLING AIR

Figure lO. - Schematic of cooled turbine cooling air cycle.

air could reduce the flow. However, design standards whJch account for worn

seals, varying engine power levels, and allowable disk temperature environ-
ment would need to be established. Furthermore, different approaches to

routing of the air to the disks would have to be established.

Turbine blade cooling air is extracted from the compressor and directed

to a heat exchanger and from there to the HP turbine at a temperature lower

than compressor discharge temperature. The air used to cool the HP turbine
vanes does not bypass any work producing stages and, therefore, is considered

nonchargeable provided that the turbine inlet temperature is quoted at the
rotor inlet rather than the combustor outlet. (For an explanation of the

terms chargeable and nonchargeable, see Paragraph 4.2.3.1.4.) Cooling of
the vane cooling air would reduce the amount of air required, but it would

not impact the cycle. Another reason for cooling the cooling air would be
to reduce the vane flow in order to diminish the effect _; cooling flow on
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turbine efficiency. As the vane cooling flow exits, it disrupts the vane

flow field. At high flows, this effect can be significant. However, for

the time period specified and at the turbine inlet temperature level assumed,

the vane cooling flow is low enough to preclude significant efficiency

penalties.

The analytical method used to evaluate the effects of cooling was to

penalize the turbine efficiency for pumping losses, etc., and to assume that

the bla4e and hub cooling air do no work in the turbine being cooled and re-

enter the cycle behind the HP turbine. This assumption is valid only in

the case of a single_stage turbine. For a multistage turbine, cooling air

bypasses only the stage being cooled and reenters the cycle behind that

stage. Turbine vanes in multistage turbines also require differen_ handling.

The cooling air to a second stage vane bypasses the first turbine stage and

therefore, must be considered as chargeable cooling air.

Turbine efficiency was penalized for the amount of cooling air required.

In other words, turbine efficiency increased as required blade cooling

decreased. The efficiency penalty schedule used was 0.2 points of efficiency

for each percent cooling air.

The results of this study are summarized in Figures II, 12, and 13.

Presented in Figures ii and 12, are curves of specific fuel consumption,

bypass ratio, and specific net thrust as functions of jet nozzle velocity

ratio and heat exchanger effectiveness. Figure 13 presents curves of HP

turbine efficiency, and HP turbine cooling airflow versus heat exchanger
effectiveness.

At a jet nozzle velocity ratio of 1.19 and a heat exchanger effective-

ness of 0.8, the maximum benefit to the cycle was approximately 0.53 percent

improvement in specific fuel consumption. This improvement was relative

to the baseline cycle with cooling air (see earlier discussion of baselines).

Basic engine weight decreased 12.2 kg (27 ib) per engine but the heat exchang-

ers added 4.5 kg (i0 ib) per engine. The net improvement in DOC was 0.41 per-

cent. The benefit to the cycle was small because the projected blade cooling

air requirement for the 1985-1990 time frame is small.

Although the benefit to the cycle was small, hydrogen cooling of the

blade cooling air seemed promising from other aspects. It suggested that

the combined benefit of higher turbine inlet temperature plus inexpensive

cooling might be attractive. Accordingly, a more detailed study was conducted

at 1760°C (3200°F) turbine inlet temperature. The results of this stud) will

be discussed in a subsequent section.

4.1.5 Fuel heating with exhaust gas. - The concept of regenerative fuel

heating was suggested because of the effect of the low temperature fuel at

the combustor inlet. As noted earlier, the introduction of low temperature

42

1978023142-050



!

• 14

o13

<

PRECOOLER
EFFECTIVENESS= 0

12

I1

0.22 I I i I
NOTES:

.a I. HYDROGEN FUEL INLET TEMPERATURE
• .4._ TO HEAT SXCHANGER " 50°K (90°R)

i.
_: 2. MAX. CRUISE OPERATINGCONDITION

0.220 - ._.
.o AT lO 668 m (35 OOO FEET), MACH 0.85,

, _ ST'D ATMOSPHERE
, 3. HP COMPRESSOR DISCHARGE TOTAL

z
c TEMPERATURE - 786°K (1415°R)

" %4_ NET THRUST= 26 689 NI(6000 LB) J_/

PC O.215 --:)

_, _ 0.2 " Z
"-,_, _._- _.,<_ c,oo,_R_%,w,_ssi.._

z
0.210 -- o

t
0.20 - _

UJ

u_ 0.20
. 0.6 0.8 .O I.2 1.4 1.6

CORENOZZLE-TO-FANNOZZLEVELOCITY RATIO (VcoRE/VFAN)

Figure 11. - Effect on SFC of cooling turbine cooling air with fuel
at max. cruise.

43

1978023142-051



I
NOTES:

1. HYDROGENFUEL INLET TEMPERATURETO
15.0 -- HEATEXCHANGER= 50°K (90°R)

15 2. MAX. CRUISE OPERATINGCONDITIONAT
10 668 m (35 000 ft), MACH 0.85,
STiD ATMOSPHERE

3. .,oCOMPRESSOR DISCHARGE TOTAL
TEMPERATe'RE= 786°K (1415°R)

14o --

E
.D

U _

o /
m13.0 __ .o

z _ 13 .....

F- Z

__,2o- _ ,
I11 '

•_ p- ,

_ Z

U U

_ II.O --,':"

-

10.0 --

I0

0.6 0.8 I.0 I.2 I.4 .6
9.5

CORE NOZZLE-TO-FAN NOZZLE VELOCITY RATIO, VCORE/VFAN
S-21055

Figure 12. - Effect on specific net thrust of coollng turblne
coollng 41r with fuel at max. cruise.

44

1978023142-052



0.91 NOTES:

I. HYDROGENFUEL INLET TEMPERATURETO
u HEAT EXCHANGER = 50°K (90°R)Z

o w 2. MAX. TURBINE INLET TEMPERATUREAT
TAKEOFF = 1756°K (3160°R)

3. MAXIMUM COMPRESSOR DISCHARGE

0.905 - TEMPERATURE = 881°K (1585°R) ....

_ .

0.90 ............

0.04,

• -.

_°") .-. O"03 l.,/2. I% _._.TOTAL_._COOLING AIR

O-J
Ju
I, >-

"°
O-J

BLADE COOLING AIR ONLY

,,,, 0.01

I--

"I-

_ . . ....• iii __J i T i i ii ii Ji _ i , w

" 0 o.2 0.4 0.6 o.8 1.o
HP TURBINE COOLING AIR HEAT EXCHANGEREFFECTIVENESS

Figure 13. - HP turbine efficiency and cooling air schedules
used in study of fuel cooling of turbine cooling air,

45

1978023142-053



!

fuel into the combustor results in a performance penalty when compared with the

fuel temperatures typical of conventional kerosene type fuels. The scheme is

essentially a regenerative gas turbine cycle except that the energy is added to
the fuel rather than the air. It "s illustrated in Figure 14. Parenthetically

it is interesting to note that, with the high pressure ratio cycles being
evaluated, regeneration of the compressor discharge air would not be feasible

because its temperature is higher than that of the exhaust gas.

The results of this study are presented in Figures 15, 16, and 17. Pre-

sented are curves of specific net thrust, and specific fuel consumption as
functions of exhaust heat exchanger effectiveness (H2 side) and exhaust nozzle

velocity ratio. Figure 15 is for the case where the exhaust gas side pressure

drop is zero, Figure 16 shows 4 percent, and Figure 17 shows 8 percent.

The results indicate that this scheme offers the maximum benefit of any of
the concepts evaluated. The improvement in specific fuel consumption at a com-

bination of 0.80 effectiveness and 4 percent pressure drop at a 1.19 Jet nozzle

velocity ratio is 4.31 percent, relative to the reference value as shown on

Figure 16. Engine weight increased 12 kg (27 Ib) and the heat exchanger added
an additional 112 pounds. The net improvement in DOC was 2.9 percent relative
to the baseline cycle where the fuel was introduced into the combuster at

50K (90R).

The decrease in engine effectiveness which would normally result from re-

moving heat from the exhaust is more than made up by the increase in work output

from both the fan and core engine section as a result of the increase in enthalpy
of the fuel/air combustion products applied to both the high- and low-pressure

turbine stages, and as a result of the multiplying factor stemming from the
i0:I bypass ratio.

FAN H 2 FUEL HEAT EXCHANGER 7

HPC f HPT LPT I

I
"---- H 2 FUEL

@

Figure 14. - Schematic of engine cycle with exhaust gas heating

of H2 fuel.
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4.1.6 _HI expander cycle. - A study was completed to evaluate the performance
improvement which might be obtained by providing a_rcraft accessory horse-

power using a hydrogen expansion turbine rather than extracting it from the

engine through a gearbox. Originally, it was hoped that the expander cycle
could provide some of the fan or compressor horsepower requirements. However,

preliminary calculations showed that the fuel would have to be pumped to very

high pressures to provide significant amounts of power relative to the require-

ments of the fan and compressor. For example 13 790 kPa, (2000 psi) is required
to obtain 580 hp, which is only 5 percent of the compressor horsepower. Further
increases in power would require higher hydrogen pressures since the turbine
flow rate which is the engine fuel flow rate, and the heat addition from the

exhaust stream is constant. It is believed that the increase in engine com-
plexity required to use the hydrogen expansion turbine to provide only a
small amount of the compression horsepower requirements is unwarranted.

The emphasis shifted to the investigation of providing aircraft acces-

sory horsepower requirements. The expander cycle is illustrated in Figure 18.
This scheme consists of pumping the hydrogen fuel to a pressure level above

that required for delivery to the engine, heating it in an exhaust gas heat

exchanger, and expanding it through a turbine. The benefit to the cycle was

/ co 4.ozzI
"/ A EXCHANGER_/

FAN I L__ H 2 FUELI BOOST PUMP
I
I

' (+I. -- ACCESSORY
SHAFT

HORSEPOWER

EXPANSION

TURBINE
t

Figure 18. - Schematic of expander cycle.
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expected to result from the elimination of the accessory power load and the

decrease in fuel flow due to fuel heating. There would also be a decrease

• in engine weight associatud with a smaiier engine gearbox, but it was assumed

that was offset by the increased weight of the fuel pump and the additional

weight of the hydrogen turbine and the associated gearing.

The heat exchanger effectiveness and pressure drop (_P/P) selected were

0.8 and 0.04, respectively. The pressure to which the fuel must be pumped

to yield a net output of 125 hp for the aircraft accessories was calculated.

Only the power required to pump the hydrogen to pressures above 2482 kPa

(360 psia) was charged to the expander cycle.

The relationship of net horsepower available to the aircraft accessories

and the hydrogen tu_blne inlet pressure is shown in Figure 19. The fuel

pump efficiency was selected as 65 percent and hydrogen turbine efficiency

including mechanical losses was assumed to be 80 percent. The fuel tempera-

ture out of the fuel pump was calculated as a function of fuel pressure rise.

The hydrogen temperature into the H) turbine was calculated using all the
engine exhaust flow and the effectiveness of 0.8. The hydrogen was expanded

across the turbine to the required combustor inlet pressure of 360 psia.

The II_ temperature at the outlet of the turbine was calculated based on a

90 percent adiabatic efficiency. Engine performance was based on the fuel

temperature at the turbine outlet and includes the effects of exhaust gas

pressure drop and cooling in the heat exchanger. Specific fuel consumption

and core jet-to-fan duct velocity ratio are shown versus bypass ratio in

Figure 20. The specific fuel consumption at a core-to-fan nozzle velocity

ratio of 1.19 is 0.1993 (kg/hr)/daN (0.1954 (ib/hr)/ib which is a 4.31 percent
improvement over the baseline SFC of 0.2042 (Ib/hr)/\b listed in Table 7.

The regenerator weight is 51 kg (112 ]b) engine and the decrease in engine

weight Js 12.2 kg (27 ib)/engine. The improvement in DOC is 2.9 percent.

a.l.7 Selection of preferred concepts. - A summary of the feasibillty studies

is included as Table 8. The concepts which yield the largest reduction in

DOC are fuel heating and the expander cycle. The fuel heating concept was

recommended for use in the study as it is less complex and provides an equal

DOC benefit. As noted earlier, however, hydrogen cooling of the turbine

cooling air is attractive in many resp,_cts and offers advantages if higher

turbine inlet temperatures were selected. This concept is further dis-
cussed in section 4.2.3.1.

4.2 Cycle Definition and Configuration Definition

The cycle definition and configuration work was accomplished in three

parts. The first part was a review of prior studies of advanced turbofan

engines. The second part was selection of the initial cycle for a LH2-fueled
• engine. It relied heavily on these prior studies and cycle variables were
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52

1978023142-060



I -- CO

Z .0

CM _
_ O
c:_ eY

U

-

l-J O e,_ ,-t

L- ILl N

_'4 N
X r,4 !

n o

u

_ L _ N

_ _ _ _o

_" 0 N ",4

o _ _ r_
0 c_l

0 _ I

-,*r0 _'_

_._ II II
I.¢.I _ .M

0 0 O.
Z _ Li. I"-"

0 0 C) O_

53

1978023142-061



TABLE 8. - HYDROGEN EXPLOITATION SUMMARY

_P _SFC** Engine HX _DOC*

fH2 Pair % _wt _wt %

Precooling 0.8 0.06 -1.86 -63 + 75 -1.33

Inter cooling 0.8 0.04 -0.93 -40 +I00 -0.57

Cool_d turbine cooling air 0.8 N/A -0.53 -27 + I0 -0.41

Fuel heating 0.8 0.04 -4.31 +27 +112 -2.90

H2 Expander cycle 0.8 0.04 -4.31 +27 +412 -2.90

**Relative to the baseline SFC = 0.2042 (.l--b)/Ib
hr

7.75 (_wt) + 1.332 SFC 1
106 SFC_I

*ADOC(%) = x I00
DOCbase

selected consistent with them. In the third part, a more detailed study was

made of a high temperature, high pressure ratio cycle. Work completed in

the second part was updated and compared to the results of the high tempera-
ture study.

4.2.1 Review of previous studies. - In a previous LH2 transport study (Ref. I),
Lockheed established a baseline engine cycle which is defined in Table 6. More

recently, the General Electric Company and Pratt and Whitney Aircraft have
studied turbofan engines designed for low fuel consumption under contract to

NASA Lewis. The work is reported in References 36, 37, and 38. These studies

were reviewed in detail as they represent the latest engine cycle and config-
uration studies for conventionally fueled subsonic transports which might
become operational in the late 1980's, and because they were of a much greater

depth and scope than the engine studies accomplished in the subject program.

The aircraft used in these studies are very similar to the LH2-fueled trans-
port in mission and payload. It was considered that cycle and configuration
characteristics for LH2-fueled transport engines should be very similar to the
cycle characteristics selected by G.E. and P&W Jn the E3 (Ener_v Efficient

Engine) study. A brief summary of the results of the General Electric and

Pratt and Whitney Studies is given in the following sections.

4.2.1.1 Turbine temperature and cycle pressure ratio: General Electric

found that low-pressure turbine (LPT) cooling requirements became the over-
riding factor at rotor inlet temperatures greater than 1538°C (2800°F). Min-

imum SFC occurred at 1427°C (2600°F) for cycle pressure ratios from 32:1 to >

45:1. Minimum engine weight occurred at approximately 1538oc (2800OF) for
cycle pressure ratios from 32:1 to 45:1. Minimum DOC occurred between

1482 and 1510°C (2700 and 2750°F) for cycle pressure ratios from 32:1 to 45:1.
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GE selected a 1427°C (2600°F) takeoff rotor inlet temperature and a cycle

pressure ratio of 38:1.

• Following similar logic, Pratt and Whitney selected a 1427°C (2600°F)
maximum combustor outlet temperature and a cycle pressure ratio of 45:1.

4.2.1.2 Fan pressure ratio and bypass ratio: General Electric's results
showed that higher fan pressure ratios (up to 1.8:1) yielded improved direct

operating cost (DOC). GE selected a fan pressure ratio of 1.7:1 for initial

rating with possible growth to 1.8:1. For a separate flow exhaust system,
an exhaust nozzle velocity ratio of approximately 1.5 yielded minimum DOC.

Pratt and Whitney found that the lower SFC possible at low fan pressure
ratio and higher bypass ratios was offset completely by increased propulsion

!
system weight. Nacelle drag drives high bypass ratio engines to more compact,
high fan pressure ratio levels. A fan pressure ratio of 1.7:1 and a bypass
ratio of 8.0:1 was selected.

4.2.1.3 Engine configuration: The General Electric Energy Efficient Engine

is comprised of a single-stage fan driven by a 4-I/2 stage low-pressure tur- i
bine; a three-stage low-pressure ratio compressor providing a pressure ratio

of 1 7 driven by the LPT; a nine-stage high-pressure compressor providing

a pressure ratio of approximately 14:1 driven by a single-stage cooled axial
turbine; a double-annular combustor; and a mixed flow exhaust system. I

!

The selected P&W engine consists of a high-speed, single-stage 1.7 pres-

sure ratio fan, a three-stage low-pressure compressor with a pressure ratio

of 1.53, and a two-stage, 18.2:1 pressure ratio high-pressure compressor.
A low emission, two-stage vortex c_mbustor with aerating pilot nozzles is

included to provide a 1427°C (2600UF) maximum average combustor exit tempera-

ture. The compression system is powered by a two-stage, cooled high-pressure

turbine and a five-stage low-pressure turbine. The exhaust system consists
of a fan nozzle and a core nozzle.

4.2.2 Initial LH2 engine c_cle selection. - The initial LH2 engine cycle
selection proceeded on the basis that a rotor inlet temperaEure of 1427°C

(2600°F) to 1538°C (2800°F) was optimum. The assumption was based on findings
that show temperatures above this level require cooling for the low-pressure

turbine vanes and blades. Cooling the low-pressure turbine results in sig-
nificant performance penalties and is expensive. This assumption was tested

later in the study through the investigation of a 1760°C (3200°F) engine that

used hydrogen to cool the turbine cooling air and thereby minimize the per-
, formance penalty. The results of this investigation are covered in a subse-

quent section.

4.2.2.1 Baseline engine description: The baseline engine chosen for the

initial cycle selection study iRa two-spool, separately exhausted turbofan

consisting of the following components:
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• Single-stage fan

• Two-stage low-pressure compressor (booster stages)

• Ten-stage high-pressure compressor

• Annular combustor

• Axial cooled HP turbine (single stage)

• Axial uncooled fan turbine (4-6 stages)

• Exhaust regenerator (for fuel heating)

• Separate fan and core convergent exhaust nozzles

The cycle characteristics of the baseline engine were selected to approxl-
mate the cycle used in the feasibility studies discussed in 4.1; however,

additional intercomponent pressure drops, cooling flows and leakage were added.

A definition of the baseline cycle for the cycle selection studies is pro-
vided in Table 9. Also shown in Table 9 are three other cycles which pro-

vide a summary of how the cycle was changed from the initial Lockheed cycle

to the baseline cycle derived for the cycle selection studies. The cycle

labeled 4 is the baseline cycle used in the hydrogen exploitation feasibility,
studies and is quite close to the original Lockheed cycle (see 4.1.1). Cycle

number 3 resulted when the exhaust regenerator was added for fuel heating.

A 4.3 percent improvement in specific fuel consumption resulted when the
exhaust regenerator was added.

There was some optimism in cycle 3, however, and cycle nomber 2 incorpo-

rated the following changes:

• HP turbine efficiency was reduced I point to 0.90 to allow for losses
due to cooling.

• LP turbine efficiency was reduced 3 poi._s to 0.88 as a result of

turbine preliminary design.

• 21 horsepower allowed for bearing losses, etc., and to drive engine
accessories.

• Fan duct and intercompressor pressure drops were modified.
J

• 3.5 percent turbine cooling air was added.

The net effect of these changes was to increase specific fuel consump-
tion 7.8 percent with respect to the cycle number 3.

The baseline cycle for cycle selection studies resulted from Slow path

and component analysis. The core compressor ratio of 25.17 postulated for

cycles 2, 3, 4 was considered too high. Extensive variable geometry (all

stages) would be required and the turbine work levels for a single stage
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TABLE 9. - BASELINE ENGINE CYCLE, INITIAL CYCLE SELECTION

• I 2 3 4
Exhaust Baseline

Adjusted I Heating Feasibility
Baseline Cycle Study Studies

F_
Inlet Corrected Flow, kg/sec 684 659 618 619

(Ib/se¢) (1507) (1453) (1362) (1364)

Pressure Ratio 1.6 1.6 1.634 1.634

Adiabatic Efficlene_' 0.892 0.892 0.889 0.889

Bypass Ratio 12.0:1 12.0:i 12.5:1 13.0:1

LP Compressor (Booster)

Pressure Ratio 1.3 -

Adiabatic Efficiency 0.865 - -

HP Compressor

Pressure Ratio 19.5 25.17 25.17 25.17

Adiabatic Efficiency 0.862 0.862 0.862 0.862

Combustor !

Efficiency 1.0 1.0 1.0 1.0

Pressure Drop, _P/P 0.045 0.045 0.045 0.045 I

Hp Turbine

Rotor lnlet Total Temperature, °C 1379 1379 1379 1379

(OF) (2514) (2514) (2514) (2514)

Adiabatic Efficiency 0.90 0.90 0.91 0.91 I

Horsepower Extraction 125 125 125 125 ,

LP Turbine

Inlet Total Temperature, °C 959 948 975 978

(OF) (1758) (1738) (1787) (1793)

Adiabatic Efficiency 0.88 0.88 0.91 0.91

Horsepower Extraction 21 21 0 0

Exhaust Regenerator

Effectiveness 0.8 0.8 0.8 -

Gas Side Pressure Drop (_P/P) 0.04 0.04 0.04 -

Core Nozzte Thrust Coefficient 0.988 0.988 0.995 0.995

Fan Nozzle Thrust Coefficient 0.98 0.98 0.995 0.995

Fan Duct Pressure Loss, AP/P 0.015 0.015 0.03 0.03

LPC-HPC Pressure LossAP/P 0.015 0.015 0 0

LPT-Nozzle Pressure Loss, AP/P 0.005 0.005 0.005 0.005

Aircraft Bleed Extraction, Percent 4.1 4.1 4.1 4.1

Turbine Cooling Air, Percent 3.5 3.5 0 0

Leakage, Percent 1.0 0 0 0

Net Thrust, N 29 687 29 576 29 687 29 b87

• (Ib) (6674) (6649) (6674) (6674)

Specific Fuel Consumption, (kg/hr)/daN 0.2183 0.2148 0.1993 0.2082
(Ib/hr)/Ib) (0.2141) (0.21061 (0.1954) (0.2042)

Net Thrust, N (Includes Nacelle Drag) 26 689 26 689 26 689 26 689

(Ib) (6000) (600O) (6000) (6000)

" SFC. (kg/hr)/daN (Includes Nacelle Drag) 0.2428 0.2379 0.2217 0.2317

(Ib/hr)/Ib) (0.2381) (0.23331 (0.2174) (0.2272)
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high-pressure turbine were considered excessive. To maintain cycle pressure
ratio at 40:1 with a lower core pressure ratio, booster stages were _44_!

to the fan spool. Provisions for seal leakage (I percent) were also incorpo-

rated. This resulted in a 1.7 percent increase in specific fuel c" _umption
with respect to cycle number 2.

With respect to the cycle defined by Lockheed in the previous study,
specific fuel consumption was higher by 7.7 percent, including the effect

of the exhaust regenerator.

The flight condition chosen for the cycle selection studies was for ini-
tial cruise at i0 788m (35 000 feet), M = 0.85, maximum climb power setting.

The studies were made on the basis of installed performance and included the

effects of cowl drag but not inlet spillage drag.

The selection criteria for all investigations was minimum DOC. DOC was

evaluated using the equation given in 4.1.1.

4.2.2.2 Selection of rotor inlet temperature and cycle pressure ratio: As
stated earlier, turbine inlet temperature was limited to a restricted range

1427-1538°C (2600-2800°F). The G.E. Energy Efficient Engine study showed

minimum DOC occuring between 1482-1510°C (2700-2750°F). A maximum rotor inlet

temperature of 1482°C (2700°F) was selected on the basis of the prior studies.

Cycle pressure ratio was selected primarily on the basis of utilizing
a single stage high pressure turbine. Although extensive tradeoff studies

cou]d be made addressing single and two stage HP turbines, AiResearch experi-
ence has shown that a single stage turbine minimizes turbine cooling required

and that minimizing the number of cooled stages results in lower engine cost.

The actual maximmn turbine work level is based on tip speed, flow path,

cooling and stresses, but for cycle selection a value of 488.1 kJ/kg (210 Btu/
Ib) at the temperature selected is a reasonable maximum. Likewise, the maximum

core compressor ratio is rightfully the subject of a detailed study but for this
program, the selection of a 20:1 maximum core pressure ratio is reasonable
and avoids consideration of mismatch and stability problems.

Shown in Figure 21 is the relationship of high pressure turbine work,

fan pressure ratio and high pressure compressor pressure ratio. A maximum tur-
bine inlet temperature of 1482°C (2,J0°F) and a booster pressure ratio of 1.30:1

was assumed. Within the constraints of 488.1 kJ/kg (210 Btu/ib) turbine work

and core compressor ratio, an overall pressure ratio of 45:1 is reached only

with high fan pressure ratios. At an overall pressure ratio of 40:1, fan pres-
!

sure ratio can be approximately 1.55 to 2.0:1. Furthermore, a cycle pressure

ratio of 40:1 achieves most of the benefit of i_igh cycle pressure ratio. Based
on these considerations, cycle pressure ratio was selected at 40:1.
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Figure 21. - Selection of cycle overall pressure ratio.
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4.2.2.3 Fan pressure ratio and bypass ratio selection: Fan pressure ratios

from 1.4 to 2.2 were studied. The turbine inlet temperature of 1482°C (2700°F)

maximum (1379°C (2514°F) cruise) and the maximum cruise cycle pressure ratio of

40:1 were held constant in this po[tion of this study. Primary stream energy
extraction was varied by considering a range of bypass ratios.

Fan pressure ratio was selected on the basis of minimum DOC which includes

the effects of specific fuel consumption and engine weight. Maintenance was
not included.

The baseline engine is as described in 4.2.2.1. Figure 22 shows specific

fuel consumption versus exhaust nozzle velocity ratio for the range of fan
pressure ratios considered. Figure 23 shows bypass ratio versus fan pressure
ratio and exhaust nozzle velocity ratio. Figure 24 shows estimated engine

relative weight versus fan pressure ratio and bypass ratio.

The trends in DOC are shown in Figure 25. Each fan pressure ratio has

a minimum DOC. The curve of minimum DOC and fan pressure ratio is shown in

Figure 26. Based cn this curve, the fan pressure ratio for minimum DOC is
1.7:1. The related bypass ratio is 9.3:1 as shown in Figure 27.

4.2.3 High temperatlre investigation. - As the results of the hydrogen

exploitation studies and the initial cycle selection work became available,

it was apparent that some benefit might accrue to a high temperature cycle

which used hydrogen to cool the cooling air and thereby minimize the coolin

penalty for both the high and low pressure turbines. In order to take full
advantage of the higher turbine inlet temperatures, higher cycle pressure

ratios are required and a two-stage, high pressure turbine becomes necessary.
At a fan pressure ratio of 1.6, for example, high pressure compressor pressure

ratio would be between 21.5:1 and 26:1 at cycle pressure ratios between 50:I

and 60:1 respectively. Attaining these pressure ratios in a reasonable

number of stages and avoiding mismatch and stability problems is quite a
formidable task without even considering weight, complexity and cost

penalties.

The introduction of a two-stage high pressure turbine and a cooled fan

turbine required a more detailed turbine cooling flow analysis.

Turbine inlet temperature was held constant at 1760°C (3200°F). This

temperature was arbitrarily selected but is representative of the maximum tur-

bine inlet temperature feasible in the study time period. Cycle pressure
ratios of 40, 50, and 60 were investigated. Fan pressure ratio was also varied

although it was believed that changes from the fan pressure rati_ selected in

the earlier investigation would be second order.
!
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LH2 ENGINE INITIAL CYCLE SELECTION

I0 668 m (35 000 ft), 0.85 M, MAXIMUM CRUISE SETTING)

30

I
TIT = 1379°C (2514°F) I
CPR = 40:1 I

25 LPPR = 1.3:1 (booster stages)

EXHAUST REGENERATOR I

FN - Dcowl = 26 689 N (6000 Ib)

I

• 20 -- ] --

,, - , o ii i

.0 .2 .4 1.6 .8 2.0 2,2

CORE TO - FAN NOZZLE VELOCITY RATIO

Figure 23, - E_fect o5 fan pressure ratio and nozzle

velocity ratio on bypass ratio.
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LH2 ENGINE
INITIAL CYCLE SELECTION
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700°F) /
TIT = 1482°C (MAX)

1 6 CPR = 40:I

• LPPR = 1.3:1 ( ooster stages)I
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Figure 24. - Effect of fan pressure ratio and

bypass ratio on engine weight.
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LH2 ENGINE INITIAL CYCLE SELECTION
10 668"m (35 000 ft), 0.85 M, MAXIMUM CRUISE SETTING)

I0.... I
2.01.8 1.6

8

\
FAN PRESSURERATIO

6 \

1.4

O
,',4

W
_ q
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CPR- 40'1 I
LPPR - 1.3:1 (boos r stages)

EXHAUSTREGENERATORFN - Dcowl = 26 689 (6000 Ib)
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2 4 6 8 0 12 14

BYPASS RATIO

Figure 25. - Effect of fan pressure ratio and bypass ratio
on direct operating cost.
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LH2 ENGINE INITIAL CYCLE SELECTION
I06689M (35000 ft),0.85 M, MAXIMUM CRUISE SETTING)

4 I
TIT = 1379°C (2514°F)
CPR = 40:1
LPPR = 1.3:1 (booster stages)

EXHAUST REGENERATOR

FN - Ocowl = 26 689 N (6000 Ib)
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_ 0
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-2 _D FAN PRESSURE RATIO

-4 i

.4 1.6 1.8 2.0 2.2

FAN PRESSURE RATIO

P

Figure 26. - Effect of fan pressure ratio on change In direct operating cost,
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LH. ENGINE INITIAL CYCLE SELECI!ON

10 668 m (35Zo00 ft), 0.85 M, MAXIMUMCRUISE SETTING)

I 4 I I :

TIT = 1379°C (25140F)
CPR = 40:1

LPPR = 1.3:1 (booster stages)
EXHAUST REGENERATOR

FN - DCOWL= 26 689 N (6000 l b)

12 ,-.

2
F-

m I0

Q.

"_ RATIO IN SELECTED CYCLE

_ .,

1.4 1.6 1.8 2.0 2.2
FAN PRESSURE RATO

Figure 27. - Bypass ratio vs fan pressure ratio.
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The flight condition, installation factors, and other related assump-

tions were identical to those assumed earlier. The baseline engine is

identical to that described in 4.2.2.1.

Cooling flow requirements were defined at maximum power, hot day, sea

level. An engine having a fan pressure ratio of 1.7:1 and a bypass ratio

of 9.3:1 was assumed in computing the cooling flow requirements. A schematic

representation of the hydrogen cee!ing of the turbine cooling air was shown

previously in Figure I0.

4.2.3.1 Turbine cooling requirements:

4.2.3.1.1 Engine operating conditions: Turbine cooling requirements were

established for hot day, sea level, maximum power conditions. Cycle tempera-

tures are related to temperatures at the cruise conditions using ratios

established in prior studies. The temperatures that are important are com-

pressor discharge temperature, combustor outlet temperature, high pressure

rotor inlet temperature, and low pressure turbine inlet temperature. These

locations are shown schematically in Figure 28. The temperatures used in

this study are shown in Table 10.

Temperatures at turbine stations other than those listed in Table 10

were calculated based on equal temperature drop across each turbine stage.

For example, if the _T across the low pressure turbine is 1000 ° and there

are four stages, tne temperature drop across each stage is assumed to be

250 ° . The temperatures between each blade or vane row are based c the

mass averaged temperatures of the gas stream and the cooling flows. Also,

combustor outlet temperature is that required to provide the rated rotor

inlet temperature after mixing of the first high pressure turbine vane cool-

ing air. i

!

TABLE i0. - INTERNAL CYCLE TEMPERATURES (SEA LEVEL,

HOT DAY, TAKEOFF THRUST)

Cycle Pressure Ratio

Station 40:1 50:1 60:1

Compressor Discharge i'3 859 (1546) 916 (1648) 968 (1742)

Combustor Outlet T3. 9 2087 (3756) 2087 (3756) 2087 (3756)

° HP Rotor Inlet T4 2033 (3660) 2033 (3660) 2033 (3660)

LF Turbine Inlet T4. 2 1617 (2910) 1577 (2838) 1537 (2766)
...... i

" Temperatures in OK (OR)
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4.2.3.1.2 Turbine cooling air heat exchanger: The turbine cooling air

heat exchanger is similar to those used in prior work which has been dis-

cussed earlier. At first, it was assumed that the heat exchanger had an

effectiveness of 0.8. Further study indicated that the resulting cooling

air outlet temperature was approximately 211°K (380°R). Heat exchanger |,
freezing would be a problem at this temperature and cooling air outlet

temperature was limited to 311°K (560°R) to avoid this problem, A bypass _
arrangement or a lower effectiveness heat exchanger is required. (Refer

to heat exchanger design, Section 4.3.6.) i
|

J

4.2.3.1.3 Turbine design criteria: Minimum design crit_,rla were established _

to allow the determination of turbine cooling requirements. The criteria |

established included the follo_Ing: _

I
R

• Allowable metal temperatures
!

• Combustor pattern factor

• Blade and vane heat transfer effectiveness

• Blade relative gas temperature

• Turbine work limits

• Turbine cooling efficiency penalties

The allowable metal temperatures assumed for this study are shown in Table ii.

They are based on the results and prolectlons of turbine material technology pro-

grams and are applicable to long-life transport engines. !,

TABLE l l. - ALLOWABLE METAL TE}_E_TURE LIMITS
!
i

Temperature I,tmit t

ltigh Pressure Turbine Vanes 1204°C (2200°F)

High Pressure Turbine Blades 1093°C (2000°F)

Low Pressure Turbine Vanes i149°C (2100°F)

Low Pressure Turbine Blades i093°C (2000°F)

J
L

l

69

1978023142-077



I

The combustor pattern factor (T3.9max - T3.9avg)/T3. gavm - T 3) deter-
mines the peak temperature that the turbine vanes feel. Bla_es are not

influenced by the pattern factor as their rotation tends to average the

temperatures to which they are exposed. The combustor pattern factor per-

sists throughout the turbine, although it is attenuated and tends to shift

both radially and circumferentially. Hydrogen-fueled engines will have

lower pattern factors than Jet A fueled engines. H,wever, the inherent lower

pattern factor can be traded to some extent for smaller combustor volumes.

The pattern factors assumed for the study are show_ in Table 12. They are

significantly better than can be achieved with conventional fuels and are

consistent with the combustor size selected. Further improvement would be

possible if a larger combustor were selected; however, the combustor was

sized based on flowpath, weight and cost considerations which generally
favor small size.

Blade and vane cooling requirements were calculated on the basis of

simple effectiveness correlations, a simplified approach. To establish

cooling flows precisely requires consideration of a number of factors not

included in the simple effectiveness correlations and is beyond the scopeI

of this study. T_;o levels of effectiveness versus cooling flow were used.

One_ used for the higher pressure turbine, reflects a sophisticated, high

effectiveness, high cost approach. The second is a lower effectiveness,

lower cost approach which was used for the low pressure turbine.

The temperature environment of the rotating blade is a function of the

stage work, mean blade speed and _he gas temperature. For this study, it

was assumed that the temperature felt by the blade was 90 percent of the

gas temperature for high pressure turbine blades and 93 percent of the gas
temperature for the low pressure turbine.

An analysis of the turbine work required to drive the high pressure

compressor in the 40:1, 50:1 and 60:1 cycle pressure ratio engines indicated

that the 40:1 engine required a single-stage turbine and the 50:1 and 60:1

cycles required two-stage high pressure turbines.

TABLE 12. - LH 2 COMBUSTOR PATTERN FACTORS

Turbine Vane Pattern Factor i
!

First High Pressure Vane 0.15 I

[Second High Pressure Vane 0.15

First Low Pressure Vane 0.125

Second Low Pressure Vane 0. I0
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Turbine cooling flow leaving the turbine blades or vanes disrupts the

flow field and causes losses. These losses are small when trailing edge

discharge is feasible. However, to achieve the high effectiveness cooling

schemes required, f_Im cooling is required and efficiency penaltles are

incurred. Baseline turbine efficiencies were, therefore, adjusted to reflect

the type of cooling air discharge and the quantity of cooling air.

4.2.3.1.4 Turbine cooling flow quantities: Turbine cooling flow require-

ments are shown in Table 13 for the three pre=gure ratios being investigated.

As just stated, a slngle-stage high pressure turbine is satisfactory for the

40:1 pressure ratio cycle, but a two-stage high pressure turbine is required

for the 50:1 and 60:1 pressure ratio cycles.

The flow requirements are separated into cooled chargeable, uncooled

chargeable, and, in the case of the high pressure turbine, nonchargeable

cooling air. Cooled chargeable air is cooling flow that is cooled by hydrogen

and which bypasses one or more work producing stages of the turbines. It

therefore reduces horsepower produced by the turbine. Uncooled chargeable

air is cooling flow that is not cooled by the hydrogen and which bypasses

one or more work producing stages. Nonchargeable air is the air used to

cool the first high-pressure vane. First hlgh-pre_sure vane cooling air

does not bypass any work producing stage and, therefore, does not diminish

horsepower produced by the turbine. First vane cooling air does have an

TABLE 13. - TURBINE COOLING AIR FLOW REQUIREMENTS

1760°C (3200°F) ROTOR INLET TEMPERATURE

HP Turbine* LP Turbine*

Cycle Pressure Cooled Uncooled Nonchargeable Cooled Uncooled

Ratio Chargeable Chargeable (Ist Vane Chargeable Chargeable

40:1 (I STG HPT) 3.0 1.8 3.0 5.0 2.4

50:1 (2 STG HPT) 6.2 2.3 3.0 4.1 2.4

60:1 (2 STG HPT) 5.0** 2.3 3.0 2.7 2.4

*Cooling flow expressed in percent of compressor flow. Includes coolant

for blades, vanes, shroud, and disks, plus leakage.

" **Note that cooling flow requirements are lower for the 60:1 pressure ratio

design due to the lower inlet temperature at the second stage of the high

pressure turbine and at the inlet of the low pressure turbine. These lower

temperatures result from the greater work extraction at higher pressure
' ratios,
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effect on the temperature of the gas entering the first turbine rotor.

However, all cycle calculations are based on the mixed temperature at the

first rotor inlet. Therefore, the gas temperature at the first vane inlet
(combustor outlet) is higher than the temperature at the first rotor inlet.

The amount of cooling flow to the vane is only _mportant in determining the

temperature environment of the vane and the efficiency of the turbine.
High vane cooling can effect the efficiency of the turbine as discussed

earlier. To minimize the amount of vane cooling and the efficiency penalty,
hydrogen cooling of the vane cooling air is utilized. Cooling air for the

second high pressure turbine vane and the low pressure turbine vane is

chargeable as it bypasses one or more work producing stages.

As described in Paragraph 4.1,4, disk cooling air is not cooled by
the hydrogen.

4.2.3.1.5 Thermodynamic accountability of turbine cooling air: Turbine

cooling air results in two penalties to the cycle. The first is a reduc-
tion in turbine efficiency due to disturbing the blade and vane flow fields.

This has been covered in earlier discussion. The penalty assessed was
0.2 points in efficiency for every percent cooling _ir used. The second

penalty results from bypassing one or more work producing stages of the

turbine. In the thermodynamic model of the engine, flow to any of the blade

or vane rows, other than the first vane, is assumed to completely bypass
the high pressure turbine. This is also true for all air going to the low

pressure turbine. This approach simplifies the model considerably but

results in a more severe penalty than is actually incurred. For example,

vane cooling to the second vane of the HPT bypasses only one stage of the

HPT. To account for this, the actual cooling air to any cascade row was

reduced by the ratio of the number of work producing stages it bypasses and
the total number of stages in the turbine. This is a simplification which

is considered satisfactory for this investigation.

4.2.3.2 Cycle selection: The cooling flows listed in Table 13 were used in

the cycle selection studies for the high-temperature investigation, Rotor
inlet temperature was held constant at 1760°C (3200°F) and cycle pressure

ratio, fan pressure ratio and bypass ratio were varied. Booster pressure
ratio was held constant at 1.45:1. All engine cycles were evaluated at

i0 668M (35 000 ft), Math 0.85. Engine thrust minus cowl drag was held
constant at 26 689 N (6000 Ib). The exhaust regenerator was included in the

cycle. Figures 29 through 34 show the results of the investigation for the

range of cycle pressure ratios and fan pressure ratios investigated. The

weight and performance data shown in Figures 29 through 34 were used to

determine ADOC relative to the baseline, Trends of DOC vecsus fan pressure
ratio and bypass ratio are shown in Figures 35, 36, 37 for the three selected

values of cycle pressure ratio. The minimum DOC at each fan pressure ratio
and cycle pressure ratio is shown in Figure 38. Figure 38 also shows the

bypass ratios as a function of fan pressure ratio and cycle precqurc ratio.
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Figure 29. - Effect of core energy extraction and fan pressure
ratio on SFC and bypass ratio (CPR = 40).
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HIGH TEMPERATURE CYCLE SELECTION

....I •TIT = 1760% (3200°F) (_X.)
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Ffgure 30. - Effect of fan pressure ratio and
bypass ratio on engine weight (CPR = 40).
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LH2 ENGINE STUDY HIGH TEMPERATURE CYCLE SELECTION
I0670 m (35000 ft),0.85M, _XIMUM CRUISESETTING)
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• Figure 31. -. Effect of core energy extraction and fan pressure
ratio on SFC and BPR (CPR - 50).
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Figure 32. - Effect of fan pressule ratio and

bypass ratio on engine weight (CPR = 50).
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LH2 ENGINE
HIGH TEMPERATURE CYCLE SELECTION

(10670 m (35 000 ft), 0.85 M, MAXIMUM CRUISE SETTING)
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' Figure 33. - Effect of core energy e>,tractlonand fan pressure
ratio on SFC and BPR (CPR = 60).
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LH2 ENGINE
HIGH TEMPERATURE CYCIE SELECTION

TIT = 1760°C (3200°F) MAX.
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Figure 34. - Effect of fan pressure ratio and bypass

ratio on engine weight (CPR = 60).
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LH2 ENGINE
HIGH TEMPERATURECYCLE SELECTION

(10 668 m (35 000 ft), 0.85 M, MAXIMUM CRUISE SETTING)
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I
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Figure 35. - Effect of bypass ratio and FPR on
DOC for CPR- 40.
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LH2 ENGINE
HIGH TEMPERATURECYCLE SELECTION

(i0 668 m (35 000 ft), 0.85 M, MAXIMUM CRUISE SETTING)
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Figure 36. - Effect of bypass ratio and FPR on
DOC for CPR = 50.
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LH2 ENGINE STUDY
HIGH TEMPERATURE CYCLE SELECTION

(10 668 m (35 000 ft),0.85 M, MAXIMUM CRUISE SETTING)
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• Figure 37. - Effect of bypass ratio and FPR on

DOC for CPR = 60.
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LH2 ENGINE
HIGH TEMPERATURE CYCLE SELECTION

(IO 668 m (35 O00 ft), O.85 M, MAXIMUM CRUISE SETTING)
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Figure 38. - Effect of fan pressure ratio and cycle pressure
ratio on DOC and bypass ratio.
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Minimum DOC occurs at a fan pressure ratio of approximately 1.75:1 for

all three cycle pressure ratios and a 60:1 cycle pressure ratio yields the

most improvement. There is approximately 0.8 percent difference in DOC

between a cycle pressure ratio of 40:1 and 60:1. This small difference in

DOC was not believed to be high enough to justify the significant complexity

and cost penalties associated with the very high pressure ratio engine.

The 1482°C (2700°F) cycle initially selected offered a_DOC of 2 percent.

However, cooling flows were calculated on a different basis and hydrogen cool-

ing was not utilized. Accordingly, cooling flows were calculated on the

basis of the revised methodology (4.2.3.1) and weight and SFC recalculated.

The _DOC for this cycle is shown in Figure 38.

The 1482°C (2700°F), 40:1 cycle pressure ratio engine incorporating hy-

drogen cooling of the turbine cooling air and the exhaust regenerator was

selected as the cycle to represent technology and performance appropriate for

the subject LH 2 fuel system study. This selection results in a DOC approxi-

mately i percent higher than the 60:1, 1760°C (3200°F) cycle. The high-

temperature, hlgh-pressure ratio engine would be significantly higher in cost

than the selected engine. If the cost were more than 6 percent higher, which

is very likely, the DOC advantage would be negated.

4.3 Selected Engine Concept

The final cycle selected as a result of the hydrogen exploitation studies

and cycle selection investigations has the following significant features at

the engine design point (maximum cruise power, i0 668 m (35 000 ft) M 0.85):

• Fan pressure ratio of 1.7:1 and a bypass ratio of 10:1

• A booster pressure ratio of 1.45:1

• A compressor pressure ratio of 16.5:1

• A rotor inlet temperature of 1379°C (2514°F) [1482°C (2700°F) maximum]
rotor inlet temperature

• , cycle pressure ratio of 40:1

4.3.1 Description and performance. - The selected engine is a twin spool,

direct drive, separately exhausted turbofan. A single stage fan and two

booste_ stages are driven by a multistage, uncooled, axi_l turbine. The

• gas generator consists of a lO-stage axial compressor, a through-flow cir-

cular combustor and a slngle-stage cooled axial turbine. The spool shafts

are concentric and the low pressure spool shaft _asses through the high

pressure shaft.
g
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Four heat exchangers are included as part of the engine to provide

(a) hydrogen cooling of the turbine cooling air, (b) engine oll cooling,

(c) hydrogen cooling of the aircraft environmental control system air and

(d) fuel heating. They are described in Section 4.3.6.

Basic cycle and performance data are listed in Table 14 at the engine

design point and at sea level static takeoff conditions. The performance

includes the effects of inlet pressure recovery, horsepower extraction,

aircraft bleed extraction and fan stream scrubbing drag. Freestream cowl

drag and inlet spillage drag is not included. The cycle and performance
characteristics shown in Table 14 are the final results of cycle o_timlza-

tion. They reflect final estimates of component performance, pressure losses,

cooling flows, etc. The primary refinements included increases in low pressure

turbine efficiency and nozzle thrust coefficients, compared to those used in

the early part of the study. Typical engine performance curves are presented

in Appendix G.

4.3.2 Weight_ geometry, and scaling relationships. - An envelope drawing of

the selected engine is included as Figure 39. Dimensions, mount locations,

accessory gearbox and thrust reverser details are shown.

The estimated dry weight of the bare baseline-size engine is 1715 kg

(3780 ib). This weight includes engine accessories, i.e., fuel control, fuel

pump, lubrication pumps, heat exchangers and accessory gearbox. Aircraft

accessories, inlet, nozzles, fan thrust reverser and noise suppression are

not included. The estimated aeight of the inner and outer fan ducts, fan and

core nozzles, and fan thrust reverser is 367 kg (809 ib). The total dry

weight of the engine exclusive of inlet, aircraft accessories and noise sup-

pression is 2082 kg (4589 ib).

The engine may be scaled within _25 percent of its base size according
to the following relationships:

Scaled Thrust) 1.0Scaled Weight = Wbl Base Thrust

Scaled Thrust) 0.25
Scaled Length _ Lbl Base Thrust

Scaled Thrust) 0.5Scaled Diameter = Dbl " Base Thrust
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' TABLE 14. - CYCLE AND INSTALLED PERFORMANCE CHARACTERISTICS -

SELECTED LH2-FUELED BASELINE ENGINE

M 0.85
i0 668 m

SLS, Std Day (35 000 ft)

Power setting Takeoff Max. cruise

Net thrust N, (ib) !36 587 (30 706) 29 i00 (6542)

SFC, (kg/hr)/daN ((ib/hr)/ib) 0.1045 (0.1025) 0.2054 (0.2014)

Bypass _atio 10.25 I0,0

Fan airflow, kg/sec (ib/sec) 483.7 (1066.4) 217._ (478.8)

Fan pressure ratio (tip) 1.594 1.7

Fan pressure ratio (hub)* 2.26 2,466

Compressor pressure ratio 15.5 16.5

Rotor inlet temperature,

°C, (OF) 1482°C (2700) 1379°C (2514)

*Hub pressure ratio includes booster stages

4.3.3 Engine cost. - Engine cost was established using techniques developed
for estimating the cost of Jet A-fueled engines, with suitable allowances

made for the differences between Set A-fueled engine technology and H2-fueled
engine technology. These differences include the previously discussed pro-

visions for cooling the turbine cooling air, the engine oil, and the cabin

air; heating the hydrogen in a core exhaust heat exchanger; and the fuel

control ar4 delivery system. Cost_ were developed for the base pngine, and
also for th_ installation of nozzles and thrust reverser. The cost data were

in 1976 dollars, and were provided as input to the ASSET computer program.

4.3.4 Noise and emissions. -

4.3.4.1 Noise: It is estimated that the engine selected for the LH2 trans-
port will allow the requirements of FAR36 minus i0 EPNdB to be met. The

penalty to specific fuel consumption to meet these requirements is estimated
to be negligible. The penalty to engine weight and cost is estimated to be

" less than two percent.
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Noise reduction in the following areas will be necessary:

• Fan source noise through improved airfoil design and proper blade-
- to-stator spacing

• Combustor noise

• Turbine source noise through optimization of blade and vane numbers
and spacing

It is anticipated that the technology for achieving the reduction in

the areas listed above will be available by the 1990 time period. The

acoustical treatment of the inlet, fan duct and turbine exhaust will con-

tinue to be a requirement. With respect to noise, there is no difference

between equivalent Jet A- and LH2-fueled engines.

4.3.4.2 Emissions: The use of liquid hydrogen as a fuel simplifies the
• emissions problem as products of combustion do not include hydrocarbons,

carbon monoxide, or impurities such as sulfur or carbon. The exhaust from

a LH2-fueled engine is basically water vapor. The only pollutant that will

be produced are some oxides of nitrogen (NOx) as a result of nitrogen and
oxygen from the air combining at the high combustion temperatures encountered

in aircraft Jet engines. The NOx output is an exponential function of tem-
perature and residence time in the combustor.

Hydrogen, injected in gaseous form into the combustor, has the char-

acteristic of diffusing rapidly into the air so that mixing occurs thoroughly
and very quickly. Combustion of H2/air also occurs at a high rate so the

result is smooth, complete burning with a much more uniform temperature
profile than is characteristic with Jet A fuel. Elimination of the high

temperature peaks, which occur with Jet A, and reduction of the residence time

can significantly reduce the production of NOx from a I.H2-fuel_d _ngine, even
though the average temperat,,re ..:th= combustion chambers of comparable engines
_ the same.

4.3.5 Operational characteristics. -

4.3.5.1 Rated performance: Performance ratings for the baseline-size engine
are shown in Tables 15, 16, and 17, The performance shown includes the effects

of 125 horsepower extraction and 3.k percent bleed air extraction. It also

includes the effects of internal nozzle performance, inlet recovery, and fan
stream scrubbin_ dra_.

@
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TABLE 15. • INSTALLED PERFORMANCE RATINGS AT U.S. STANDARD
ATMOSPHERE SEA-LEVEL STATIC CONDITIONS

I I T_r_t Co_pr,,m T_rblne I_le Low Pressure _,g_ Pressure

[ : dan r ko/hr/JjN Te_perature 1 Spool 5perd Spool Speed i
°C q°F) rp_ r_mPuwer Setting (Ib) l _]_/nr/Ib)

Ii (JO 706j | (0 102Sl I I i
, )98_ 17 09_ !

| I (29 ]27) | ,0 10]2) [ [ l

TABLE 16. - INSTALLED PERFORMANCE RATINGS AT 34.2°C

(93.6°F) SEA-LEVEL STATIC CONDITIONS

Thrust Consumption [ TurbJne InleL i Low Pressure Hl_h Pressure
daN _g/hrldaN Temper ture Spool _peed Spool Speed

I i (Ib) (Iblhrllb) rp*' I rp_

TABLE 17. - INSTALLED PERFORMANCE RATINGS AT U.S. STANDARD

ATMOSPHERE i0 688 m (35 000), 0.85 MACN

Net Spe¢_ t ,c Fu_l I
i Thrust Co,,_ur,p_on Turbine Inle' ' LOwPressure M_qh Pressure

d_N kg/hr/daN Temperature _ Spoor _peed C,pool _peed
Po_er _ett,ng (Ibl (Ib/hr/Ib) oc (OF) rp_ rpr

Max_r, Cl_,_b I J2J6, 0.2096 I_5_ (_650) I I*)Cc 17 ]_I

, (72751 (0,2055_ ! i !
M,*_ _ Cru,se [ 0 205_. lJ)'9 (251_,) WI27 I6 8862910,

I (6_4z) (0 201,*) I_ i

4.3.5.2 Capabilities and limits:

4.3.5.2.1 Engine flight envelope: The engine flight operating envelope
is shown in Figure 40.

4.3.5.2.2 Fllght-raaneuver loads: The flight maneuver operating load diagrams
are shown in Figure 41.

4.3.5.2.3 Starting: The engine shall be capable of groundstarts at altitudes

from sea level to 4572 m (15 000 ft). The alr start envelope in terms of
altitude and Mach number is shown on Figure 37. The ambient temperature
range fcr ground starting is from -40°C (-40°F) to 51°C (125°F). .
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Figure 40. - LH2 engine flight operating envelope.
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(a) LOAD FACTORS AND ANGULAR
VELOCITIES AND ANGULAR
ACCELERAT;ONS SHOULD BE
TAKEN AT OR ABOUT THE
CENTER OF GRAVITY OF THE

FLIGHT ENGINE.

(IDLE _; _AKEOFF THF ; T UP (b) SIDE LOAD FACTORS (S.L.)ACT TO EITHER SIDE.

e" : _ o rad/sec2 "-- | (c) ()AND ()'ARE PITCHING

; S.L._°" = 'rad/sec2=+I //_i_ VELOCITY AND ACCELERATION.
(d) "_"IS YAWING ACCELERATION.

A PP|ICABLETO -,_--_2.-_ (e) _o",S ROLL ACCELERAT,ON.

CONP'ETE RECTANGLE __'_ (f) DOWN LOADS OCCUR DURING• FRuM 5 UP TO 7 DOWN AFT _ .._ _--" FORE PULLOUT OR UP-GUST.

p .... • "_I " (,_) FORE LOADS OCCUR DURING

= +2 tad/see LANDING.
LIMIT -- (h) S.L. and e ARE NOT ACTING

S.L. = +2 SIMULTANEOUUSLY "

APPLICABLE TO (i) AT MAXIMUM RATED ENGINESPEED_ THE ENGINE AND ITS
COMPLETE CROSS- / SUPPORTS SHALL WITHSTAND
HATCHED AREA _ A G_ROSCOPIC POMENT

!

See Note (h) DOWN IMPOSED BY A STEADYANGULAR VELOCITY OF
-- 2.5 radlsec FOR A

TOTAL ENGINE LIFE PERIOD
UP OF 15 SECONDS.

TAKEOFF AND LANDING

(O TO MAXIMUM THRUST, F---_i'-__ (j) THE ENG,NE AND ITS SUPPORTS

FORE DRAFT) SHALL NOT FRACTURE WHEN

S.L. = -2.O ]_L_ +I ! MATE LOADS OF '.5 TIMES
'B"= +12 tad/see2 AFT _ _ _-FORE THE ABOVE LIMIT LOADS.

2 I _1 (k) ULTIMATE-LOAD DITCHING

'_' = ±0 tad/secT" -.1_ CAPABILITY WITH THE ENGINE
_ AT IDLE THRUST:

!4 I. 12 g's FORWARDWITH

15 ULTIMATE- 6 g's DOWN.

____!__--

2. 12 g's FORWARDWITHINA -30o CONE WITH THE

DOWN CONE APEX AT THE ENGINE
CG AND THE CONE AXIS •
PARALLFL TO THE ENGINE
LONQITUDI flALAXIS.

(5) 99's FORWARD COMBINED

WITH A 1.5-g SIOE LOAD,
AND EITHER 4._ g'S
OOWNOR 2 g's UP,

Figure 41. - LH 2 engine operating load limits.
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4.3.5.2.4 Ambient temperature limits: The engine ambient temperature flight

envelope is as sho_n on Figure 42.

4.3.5.2.5 Engine speed llmits: Maximum low pressure spool (fan) speed is

4430 rpm and maximum high pressure spool (compressor) speed is 17 860 rpm.

4.3.6 Description of englne-mou°.ted heat exchangers. - Based upon the engine

analysis, problem statements for the four-engine mounted heat exchangers were
prepared, and heat exchanger preliminary designs were established to meet these
requirements. Engine-mounted heat exchangers are required to perform the

following functions:

• An air to hydrogen heat exchanger to cool compressor bleed _ir for
use in cooling the HP turbine vanes and rotor blades.

• An oil to hydrogen heat exc|mnger to cool the engine oil.

• An air to hydrogen heat exchanger to cool compressor bleed air for i

use in the aircraft environmental control system.

• An exhaust gas to hydrogen heat exchanger, located in the engine

flow path downstream of the low-pressure turbine and upstream of

the exhaust nozzle, to transfer heat from the engine exhaust gas
to the hydrogen fuel.

Design point data for the four heat exchangers are presented in
Table 18.

Because of the high hydrogen inlet pressure 2758 kPa (400 psia), only

tubular heat exchangers were considered for these applications. The heat
exchangers were designed to eliminate freezing problems which can occur when

moisture is condensed out of the air as it is cooled and is then exposed to
tube wall temperatures below 0°C (32°F).

To provide compact heat exchanger designs and eliminate freezing problems,

the turbine cooling air heat exchanger and the aircraft ECS heat exchanger
both utilize finned tubes and hydrogen reclrculation. The fins provide high

thermal conductance to the air and the recirculation preheats the hydrogen to
raise the tube wall temperature above the freezing point.

The engine lubrication oil heat exchanger is also in the recirculation

loop and was designed as a shell and tube heat exchanger. An ejector (Jet

pump) is use_ to produce the hydrogen reclrculatlon flow with only a small

• additional pressure drop in the hydrogen. The turbine cooling air heat ex-
changer, the engine lubrication oil cooler, and the aircraft ECS air heat

exchanger heat the hydrogen in series from 50°K (90°R) to a temperature of

264.1°K (475.4°R) to eliminate freezing problems in the engine exhaust gas
' heat exchanger. The turbine cooling air heat exchanger was arranged in a

pattern as shown in Figure 43. The engine lubrication oil cooler was
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Figure 42. - LH2 englne ambient flight and
starting temperature envelope.
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H2 IN

__H 2 OUT

AIR FLOW

,p

AIRFLOW LENGTH 48.59 cm (19.13 in.)

WIDTH 12.7 cm (5.0 in.)

HEIGHT 9.42 cm (3.71 in.)

FINNED TUBES '

TUBE O.D. 0.64 cm (0.25 in.)

TUBE WALL 0.04 cm (0,016 in.}

TUBE MATERIAL 304 CRES

FIN O.D. 1.27 cm (0.50 in.)

FIN SPACING 0.06 cm (0.025 in.)

FIN THICKNESS 0.010 cm (0.004 in.)

FIN MATERIAL OFHC COPPER

FIN AND TUBE COATING NiCr

TOTAL NUMBER TUBES 308

NUMBER HYDROGEN PASSES 1

TUBE WEIGHT 7.4 kg (16.3 Ib)

TOTAL HEAT EXCHANGER WT 18 kg (40 Ib)

Figure 43. - Turbine cooling air to hydrogen heat exchanger.
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designed as sho_1 in Figure 44. The aircraft ECS air cooler was arranged

as shown i:iFigure 45.

The engine exhaust gas heat exchanger heated the hydrogen for entry to
the combus=or. This heat exchanger is exposed to a large flow rate of air

(exhaust gas) and had to be designed with low air pressure drop in a location
with limited air flow area. To satisfy these requirements, an inline tubular

heat exchanger such as used by Pratt and Whitney in the 304 engine was selected.

The proposed design has involute curved tubes running from a 56.4 cm (22.2 in.)
inner diameter to a 126.5 cm (49.8 in.) outer diameter air passage. The in-

volute tubes are arranged in a pattern as shown in Figure 46.

4.4 Technology Development Required

The technology postulated for the LH2-fuel_d engine is representative
of that which would be incorporated in an engine entering service in the

1990 time period. Much of the technology is not, however, unique to use

of LH2 fuel. Much of the aerodynamics, materials, mechanical design and
manufacturing processes, while advanced, are equally applicable to future

kerosene-fueled advanced transport engines.

Elements which are unique to the LH2 fueled engine are:

• Combustor

• H2 cooling of the turbine cooling air

• Heat exchangers

• Fuel control

The fuel control system is discussed in section 5,5 of this report.

4.4.1 Combustor. - Technology development is required to take advantage
of the properties of hydrogen and to execute a combustor design which is

smaller, provides an improved pattern factor, and is low in oxides of

nitrogen emissions.

The design of hydrogen combustion systems is particularly amenable to

analysis relative to conventional kerosene combustion systems. The kinetic

schemes and reaction rates are well established except for turbulent flow.
Therefore, a technology program to develop a hydrogen combustion system

• could consist of analytical design augmented by an experimental program to

provide turbulent flow kinetics and to verify the analytical design.

' 4.4.2 H2 coolin_ cf turbine cooling air. - There are two problems introduced
when hydrogen cooling of turbine cooling air is incorporated in an engine.
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OIL OIL
IN OUT

I 9.53tcm

H2 OUT _ -..4-- H2 IN (3.75 in,)

7-,J"a-" (3.5o In.

TUBES

TUBEO.D. 0.32 cm (0.125 in.) i

ITUBEWALL 0.030 cm (0.012 in,)

TUBE MATERIAL 304 CRES I
m

I
TOTAL NUMBEROF TUBES 600

NUMBEROF HYDROGENPASSES 1

NUMBEROF OIL PASSES 2

TUBEWEIGHT 1.2 kg (2.6 Ib)

TOTAL HEAT EXCHANGERWEIGHT 2.6 k9 (5.75 Ib)

I'

Figure 44. - Englne oli to hydrogen heat exchanger,
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H2 IN b._,|

._ _- H2OUT

,,.

AIR FLOWLENGTH 7.9 cm (3.1 in.)

WIDTH 7.6 cm (3.0 in.)

HEIGHT 60.7 cm (23.9 in.)

FINNED TUBE

TUBEO.D. 0.64 cm (0.25 in.)

TUBEWALL 0.041 in. (0.016 in.)

TUBE MATERIAL 304 CRES

FIN O.D. 1.27 cm(0.50 in.)

FIN SPACING 0.064 cm(0.025 in.)

FIN THICKNESS 0.010 cm(0.004 in.)

FIN MATERIAL OFHC COPPER

FIN AND TUBE COATING NiCr

TOTAL NUMBERTUBES 315

NUMBERHDYROGENPASSES 1

" TUBEWEIGHT 4.5 kg (10.0 Ib)

,. TOTAL HEAT EXCHANGERWEIGHT 11.3 kg (25.0 Ib)

Figure 45. - ECS bleed alr to hydrogen heat exchanger.
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H2 IN

OUTSIDEDIAMETER 126.5 cm (49.8 in.)

INSIDE DIAMETER 56.4 cm (22.2 in.)

AIR FLOW LENGTH 19.1 cm(7.5 in,)

INVOLUTE TUBE LENGTH 56.9 cm (22.4 in.)

CIRCUMFERENTIALTUBE SPACING 6 DIAMETERS

AXIAL TUBE SPACING 1.25 DIAMETERS

TUBEO.D. 0.478 cm(0.188 in.)

TUBEWALL 0.030cm (0.012 in.)

TUBEMATERIAL 304 CRES

TOTAL NUMBEROF TUBES 1984

NUMBEROF HYDROGENPASSES 8

TUBEWEIGHT 38.3 kg (84.5 Ib)

TOTAL HEAT EXCHANGERWEIGHT 77.1 kg (170Ib}

Figure 46. - Engine exhaust fuel heater.
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The first is a design problem. Normally turbine cooling air is routed

internally through the engine from the compressor to the cooled turbine.
The routing is different when the turbine cooling air is hydcogen cooled.

Complex design problems would have to be addressed but the task could be
best undertaken concurrently with engine design.

The second problem is caused by the lower temperatures of the turbine

cooling air. Thermal gradients in the blades would be more severe than

presently experienced for a similar blade heat transfer system. These high
thermal gradients can result in low cycle fatigue damage. In order to

realize the advantages of H2 cooling of the turbine cooling air, it is
recommended that parallel technology programs be undertaken to

i. Develop heat transfer systems which produce more uniform

temperatures

2. Extend development of single crystal turbine blades which have

higher cyclic fatigue strength.
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5. ENGINE FUEL SUPPLY SYSTEM

5.1 Candidate System Concepts

5.1.1 Concept descriptions. - The basic fuel system performance requirement

is that a pump or combination of pumps must supply fuel according to a specified

flow-pressure schedule. The schedule shown in Table 19 was used for initial

design considerations. Additionally, a tank-mounted pump must be included in

the system, to provide a pressure higher than the vapor pressure to the fuel
lines and the engines. The wide range of pumping systems that could achieve

these requirements is constrained by cost considerations, as expressed through

theADOC equation applied in Section 5.1.2. The objective of the concept
selection was to determine the general arrangement of the fuel supply system.

which could most efficiently meet the basic requirements of the system.

, Two concepts for the arrangement of pumps in the engine fuel supply sub-

system we e considered initially. In concept I, a low-pressure-rlse (nominally

50 psi rise) boost pump would be in the tank and a high-pressure rise main

pump would be on the engine. The boost pump would provide a positive pressure
!

to move LH2 from the tank to the engine and would meet main pump inlet pressure
requirements. In concept 2, the main pumD on the engine would be eliminated,
with tbe total flow-pressure requirements of the engine met by a single tank-

mounted pump. The analytical concept selection procedure described below
(Section 5.1.2) also included evaluation of a concept 1-1/2 pump arrangement.

Here, an engine-mounted main pump and a tank-mounted boost pump would be per-

formance matched so that the boost pump would supply some intermediate pressure

rise (determined as a parameter of the analysis) and the main pump would supply
the balance of the pressure rise. In such an arrangement, the performance

requirements of the main pump (and hence its weight and power requirements)

could be reduced and conceivably provide benefits to the overall system.

5.1.2 Results of evaluation. - The concept selection process utilized a para-

metric trade-off study approach based upon the _DOC sensitivity equation

appropriate to the fuel subsystem. With this approach, the entire range of

system configurations could be evaluated. In performing this analysis, both
the pump concept and the optimum fuel line diameter were selected. Pressure

dropline diameter and calculated line dlameter-llne weight data (see Sec. 5.2,1)

were introduced into the analysis at the appropriate points. For example,

as the llne diameter was decreased, the line weight decreased but the pressure
drop necessarily overcome by the tank-mounted pump increased, thus increasing

the required size and weight of the boost pump.
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TABLE 19. - LH2 TURBOFAN ENGINE NET THRUST, FUEL FLOW AND FUEL
PRESSURE SCHEDULE FOR INITIAL DESIGN CONSIDERATIONS

Ai_iLude 1 d/Englne Net Thrust/Eng. Comp. Discharge
Condition m (i000 ft) Hach Ikg/sec (Ib/sec) N (ib) Pressure-kPa(psla)

T
Max SLS 0 0 i 0.340 (0.749) i27 664 (28 700) 4875 (707)

Takeoff 0 0 1 0.340 (0.750) 127 664 (28 700) 4875 (707)

Climb O 0.38 0.351 (0.774) 83 538 (18 780) 5068 (735)

610 (2) 0.39 0.342 (0,755) 80 246 (18 040)

1 219 (4) 0.41 0.332 (0,732) 76 243 (17 140)

1 829 (6) 0.42 0.313 (0,690) 71 172 (16 000)

2 438 (8) 0.44 0.301 (0.664) 67 124 (15 090)

3 048 (i0) 0.46 0.288 (0.635) 63 832 (14 350) 4165 (604)

3 048 (I0) 0.64 0.303 (0.667) 56 715 (12 750) 4392 (637)

4 572 (15) 0.71 0.278 (0.613) 50 354 (ii 320)

6 096 (20) 0.78 0.251 (0.553) 44 705 (i0 050) 3730 (541)

7 620 (25) 0.85 0.226 (0.498) 38 655 (8 690)

9 144 (30) 0.85 0.195 (0.429) 32 828 (7 380) 3061 (444)

i0 668 (35) 0.85 0.158 (0.348) 27 357 (6 150) 2668 (387)

Cruise i0 668 (35) 0.85 0.159 (0.351) 26 689 (6 000) 2641 (383)

ii 582 (38) 0,85 0,132 (0.292) 23 576 (5 300) 2448 (355)

Flight Idle i0 668 (35) 0,85 0,029 (0,063) -912 (-205) 1551 (225)

II 582 (38) 0.85 0.023 (0.051_ -730 (-164)

0 0.4 0.078 (0.171) 3 648 (820)

Ground Idle 0 0 0.039 (0.085) 8 140 (i 830) 1868 (271)

I 524 (5) 0 0.032 (0.071) 6 761 (1 520)

Ground Start 0 0 0,011 (,024) - Ib2 (22)

I

Concept selection was translated into a problem of optimization of the
tank-mounted boost pump pressure rise, If the optimum rise were small, i

• concept I would be chosen; if large, concept 2; and if some intermediate

pressure rise were found optimum, c>ncept I-I/2 would be chosen.

An analysis based on ADOC was conducted to determJne the optimum design

• pressure rise (at maximum flow) for the boost pump. If the englne-mounteu

main pump efficiency (qm) is assumed to be a constant 45 percent regardless
of the boos= pump pressure rise, and if the main pump weight is assumed to be
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a constant 25 pounds, the minimum direct operating cost occurs at the lowest

possible boost-pump pressure rise. The reason for this is shown by -n

investigation of the _DOC sensitivity equation.

DOC × 105 = 3.22_hp c + 0.775 (Ws + 6EhPmax)

where

¢
DOC is expressed in seat n_i.

_,_hPc = horsepower at cruise for all pum_s (tank an_ engine
mounted)

W = total w_ight
s

6 = coefficient approximating the aircraft weight penalty

to provide and transmit the required horsepower

_hPmax = maximum horsepower into pump drives that are tank
mounted (not engine mounted)

Parameters on the right_hand side were related to pressure rlse_P through the

relations HP _ P and W _ p0.6, the latter equation being based on exten-
ump

slve Rocketdyne experle_ce with cryogenic pumps. Results of the analysis are

shown in FiEure 47. For this case of constant main pump weight, increasing

the boost pump pressure rise decreases HP c slightly because the boost pump is
more efficient than the main pump. However, this factor is far outweighed

the increased boost pump weight (which increases Ws) and the 6 _hPmaxby

term, which is directly proportional to boost-pump pressure rise. The net

effect is that, for constant main pump weight, the minimum feasible _DOC

occurs at the minimum boost pump pressure rise that will provide sufficient

pressure to the main pump inlet.

If, as is usually the case, the main pump design speed is assumed to be

NPSH limited (resulting in a weight that decreases with increasing boost-pump

pressure rise), the optimum_DOC is shown to occur at a boost pump pressure

rise of 317 kPa (46 psi). An investigation of theADOC relation shows the reason

for this. At boost pump pressure rises (_PB) below 276 kPa (40 psla), the main

pump NPSH is so low that the main pump weight becomes large and consequently

dominates theADOC equation. This causesADOC to increase with decreaslng_ B.

If, on the other hand, _PB is greater than 345 kPa (50 psi), the main pump NPSH

is so large that the main pump weight reduction has little effect: However, the

boost pump power is directly proportie-al to APB and, therefore, the tank-

mounted pump power term (6 _hpmax) becomes the dominant facLor. As a result.

_DOC increases with increasing _PB if _?B is greater than 345 kPa (50 psi).
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These results show that it is not economical to increase the boost pump

design pressure rise much above 46 psi. Therefore, the concept 1-1/2 approach
does not appear to be practical. This, in conlbination w_th the even higher

_DOC for concept 2 (main pump in the tank) resulted in the selection of

concept i, with a minimum boost pump design pressure rise, for the hydrogen-
fueled aircraft. These pazametric results were verified by preliminary calcu-

lations using several system configurations. Again, concept 1 with a pressure

rise of 46 psi was found to be favored.

5.1.3 Characteristics of selected systems. - Figure 48 depicts the selected

engine feed system concept, This figure, together with the flow-pressure
schedule found in Table 19 defined the requirements for the selected boost

pump/drive system described in Section 5.3 and the engine-mounted fuel pump
described in Section 5.4.

5.2 Engine Fuel Supply Lines

l

Selection of the configuration of the engine fuel supply lines that carry
the fuel from the tank to the engines involves determination of two basic

factors. First, the diameter of the lines which contain the fuel must be

selected. Second, the appropriate insulation system for the cryogenic lines

must be found. Diameter affects system performance in establishing both
fuel-line pressure drop that must be overcome by the tank-mounted boost pump,

and also line weight. The choice of insulation enters the system calculation

in weight and heat leakage. Qualitative insulation effects such as safety and

fabricability must also be considered. This section presents the results of
the feed-lines portion of this investigation and the methods used.

5.2,1 Size Selection. - The line diameter for the fuel-feed lines was opti-
mized in the concebt selection analysis described in Section 5.1.2 above.

As a precursor to that calculation, it was first necessary to determine the
line pressure loss as a function of line diameter. Feed Line No. 4 (aft tank

to right-hand outboard engine), was selected as the most severe configuration

in terms of total line length and number of bends. Total line length, inclu-

ding a growth factor of 1.2, was calculated to be 54 m (176 ft). Line losses for
eight right-angle bends were calculated assuming utilization of optimum line

bend radius ratio (r/dtube) of about three to five. This results in loss

coefficients (KL) of about 0.2 for a 1.57 rad (90 deg) bend. The results of a
conventional analysis for the flow of incompressible liquid hydrogen in pipes
are summarized in Figure 49 for the maximum engine fuel flow rate condition of

• 351 kg/sec (0.774 ib/sec), Table 19. It has been assumed that: (i) vapor/
liquid ratio of the fluid delivered to the engine must be zero at maximum flow,
and (2) low loss valves have been utilized in the system, so that line loss due

to valves is approximately equal to their equivalent line length. Ball valves

when used in liquid hydrogen systems satisfy this assumption. A nominal one-q

inch diameter llne results in a pressure loss of 97 kPa (14 psi) at max. flow,
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BOOSTPUMPPRESS,RISEAPB, kPa

Figure 47. - Boost pump pressure rise effects.

I ENGINE FUEL SUPPLY

LINES

NOMINAL

TANKCONDITIONS ] / SHUTOFFVALVES

SATURATED LH 2 LOW.PRESSURE _)_/

HIGH-PRESSURE

T = -253°C (- 423°F)"--"'-- PUMP | P = 317 kPa (46 psig) _" PUMPENGINE

ON

P = 145 kPa (21 psia)

FLOW REQUIREMENTIN TABLE 19

VAPOR/LIQUIr, = 0

Figure 48, - Concept I schematic (tank-mounted low-pressure pump/englne-
mounted hlgh-pressure pump),
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150 1 I

FEED LINE#4

L (X1.2) = 53.6 m 1176ft)

TURN LOSSCOEFF. = 0.02
RICTION OEFF._ 0.013

100 ....

,°4
HYDROGEN

50 _----'_- P = 72.1kg/m3 14.5Ib/ft3)
300 _ _ = 0.351kg/sec(0.774 Ib/sec),

I _ (MAX. FLOW)
OL o _ ,,

0.5 1.0 1.5 29

(in.)

I I I I I
1.0 2.0 3.0 4.0 5.0

LINE INNERDIAMETER,m

Figure 49. - LH 2 fuel feed llne pressure los_.

Figure 50 shows the incremental ADOC determined from the sensitivity

equation as a function of line diameter for the selected pump concept, deter-
mined in Section 5.1.2. A llne diameter of 2.54 cm (I.0 inches) was deter-

mined to be optimal based upon this trade approach.

5.2.2 Insulation system comparison. - From the system optimization process
described in Sections 5.1.2 and 5.2.1, a fuel-llne inner dlamter of 1.0 inch

was chosen. Because the fuel to be pumped, LH 2, is cryogenic, the fuel lines

must be insulated to prevent excessive heat input to, and consequent vaporiza-

tion of, the fuel as it flows from the tanks to the engines, a distance of up

to 48.8 m (160 feet). Two principal types of insulation systems were con-
sidered: vacuum and foam.

Where practical, vacuum insulation systems are usually utilized for

ground-based cryogenic transfer systems, as the overall heat transfer can be

: minimized by means of an evacuated space filled with radiation shielding to
control this mode of heat loss. The experience with vacuum-insulated systems

for flight-weight systems is limited, but a significant drawback is found in

manufacturing, installation, maintenance, and safety of the thln-walled tubing

U
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necessary for a flight-weight system. On the other hand, to achieve the Insu-

lation properties of a vacuum system, foam-insulated lines must be relatively

large and bulky. Foam systems can also degrade in performance over long
periods of time. Thus, there is no clear-cut choice for the insulation

approach. This section presents the results of the determination of the best
present choice for insulation system. The approach incorporates consideration

of both insulation properties and practical considerations such as weight,
manufacture, maintenance, safety, etc.

5.2.2.1 Insulation requirements: Thermal insulation considerations are one

factor in estimating the total feed-system weight. A primary requirement that

was arbitrarily established for the proposed aircraft engine design was that

the hydrogen vapor volumetric fraction should not exceed 0.5 at the engine

inlet under any flow condition. This was a consideration affecting the

design of the engine pump which reflects a limitation that allows up to
one-half the cross-sectional area of the feed line to be gaseous hydrogen at

any given instant. A second consideration relates to ground-hold conditions

(i.e., zero H2 flow) after initial line chilldown. The ground-hold condition
will result in line venting and some fuel loss (boil-off) at various time

intervals dependent on the insulation effectiveness. Excessive pressure in

the line is prevented by thermal relief devices incorporated in the shutoff

valves and a small hole in the pump check valve to allow venting into the fuel
tank.

Various techniques have been developed for insulating cryogenic components.

Some, such as those utilizing helium or nitrogen purges, do not appear suitable

for aircraft feed line application. A vacuum jacket and/or closed cell type
foam insulation appears suitable in terms of basic simplicity. A comparison of

a typical foam insulation and a simple vacuum Jacket in terms of heat leak rate

is shown in Figure 51. It is apparent that the vacuum-jacket approach is supe-

rior in terms of minimizing heat leak rate. (Joints are not included).

Foam: The effect of line diameter (i.e., pressure drop) on required foam insu-

lation thickness and total insulation weight is presented in Figure 52 for the

conditlon _ = 0.023 kg_ec (0.051 Ib/sec). For the nominal 2.54 cm (i.0 in)
line diameter, the total insulation weight (all four feed lines) is about 23 kg

(50 Ibs). Both the line and insulation weights are related to fe,_dllne dia-

meter as shown previously. Since the line diameter determines hydrogen pressure

drop, it is possible to relate the line and insulation weight to either the pump
i discharge pressure or pressure rise as shown in Figure 53. This approach in

combination with a pump weight versus pressure rise curve permits direct deter-
mination of the minimum weight system, see Section 5.1.2.

D

: The vacuum-Jacketed line approach is superior to the foam insulation in
terms of minimum heat leakage as noted previously in Figure 51. If the insula-

tion system is a vacuum annulus only, the insulation weight is zero. If an

aluminized mylar radiation shield is wrapped on the inner line, as is almost
certainly necessary, the insulation weight is 0.104 kg/m (0.07 ib/ft), or

18.3 kg (40.3 ]b) for 176 m (576 ft) total llne length.
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Figure 50. -Slze optimization for engine fuel supply line.
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Figure 51. - Effect of insulation on heat leak rate.
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Figure 52, - Foam insulation requirements.
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Figure 53, - Fuel feed llne weight requirements.
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5.2.2.2 Line configurations:

Vacuum Jacket insulation: The inner llne is wrapped with approximately 20 al-
ternate layers of fiberglass cloth and aluminized mylar. The mylar acts as a

radiation shield and the fiberglass prevents contact between the mylar sheets.

Commercial manufacturers of cryogenic piping have found that vacuum insulated

lines without radiation shields lose significant amounts of heat through radi-

ative mechanisms. The space between the inner and outer lines is vacuum pumped
to approximately i micron.

Line wall thickness calculated from flow pressure or minimum handling gage
(Sec. 5.2.3) determines the tubing weights. However, tilevalues chosen have

been called into question during discussions with one manufacturer of cryogenic
piping with whom the problem was discussed, CVl Corporation. CVI recommends

somewhat thicker walls for three reasons: easier fabricability, easier repair,
and greater structural strength. CVI suggested inner and outer wall thicknesses

of 0.089 and 0.122 cm (0.035 and 0.048 in.) respectively, compared to Rocketdyne's

estimates of 0.030 and 0.064 cm (0.012 and 0.025 in.). However, CVl's experience
lles primarily in the area of nonfllght weight systems produced without advanced

welding techniques. CVI's general concern must be considered, however. There-

fore, a recommended technology effort for subsequent work includes fabrication,
testing, and repair of fllghtweight cryogenic lines to establish minimum wall

thicknesses that may be utilized for an operating system.

It is expected that the greatest stress loadings will be experienced by
the outer llne. A technique for wrapping the outer llne with a nonmetallic

composite material reinforcement may allow simultaneous reductions in weight
at a fixed strength level and also a backup insulation system. In a NASA-
funded study, engineers at Martin-Marietta Corporation showed that serviceable

cryogenic lines could be constructed by wrapping thin metallic tubing with

glass-flber reinforcement. The metallic tube carried the cryogenic fluid,
while the wrapped reinforcement provided both strength and thermal insulation.

If the outer vacuum Jacket were wrapped with glass reinforcement, the single
wrap could act both as a reinforcement and as a backup insulation.

Another option for the outer Jacket is the use (for all or part of the
outer Jacket) of seml-flex llne. This approach would eliminate differential
thermal expansion problems.

Provision of a one micron vacuum in the vacuum annulus may be accomplished

in either of two ways; first, each fuel llne could consist of a single annulus
extending the entire length of the line. This annulus would be pumped by an

: onboard vacuum pump or by periodic pumping by ground-based equipment. Alter-

natively, the annulus could be pumped down and sealed during assembly and re-
pumped only if measurements indicated a vacuum leak. Second, the vacuum llne

could be built from independent stand-alone units. Again, the individual seg-

ments, or spools, could be pumped by onboard or ground-based pumps, or they
could be pumped out and sealed when constructed.

ii0
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The spool approach is preferred due to its greater reliability. In the
case of a single vacuum annulus, a single large leak imposed by some accident

. during flight could conceivably disable that fuel ]ine. Further, vacuum
pumping of a thin annulus is very slow, requires a large pump, or may require

an extensive network of pumping lines throughout the aircraft. For tilespool

approach, as discussed in Section 5.6, loss of vacuum on a single, 3.05 m
(i0 ft) spool will not cause vaporization of the fuel that passes through

the spool. Thus, a single spool failure does not endanger the aircraft at

any point of the flight profile.

Foam insulation: The foam insulation approach offers several distinct advan-

tages compared to the vacuum approach principally in the areas of safety and

reduction of technical complexity. From the standpoint of safety, foam
insulation is not lost by catastrophic failure of spool sections, and the

presence of the foam protects the inner fuel line from damage during handling

and normal operations. Foam-insulated lines also present significant advan-

tages in manufacturing and maintainability. Vacuum spool sections must be
f_bricated as complex double-concentric units and pumped at the fabrication

or installation points. Construction for foam lines is much simpler: indivi-

dual single tubes can be welded together and then covered by a foamed-in-
place insulation. Repair is accomplished simply by cutting and removing

the foam, repairing the inner line, and refoaming an insulation layer. Foam

layers must be protected against the phenomenon of cryopumping, in which
condensation of gases within the foam cells eventually degrades the insulation

, properties. Lightweight, metallic coverings can successfully protect against

cryopumping problems. An additional advantage of foam is the elimination of

one type of thermal expansion problem. For a concentric-tube vacuum insula-

tion system, the differential contraction between the cold inner line and
the warm outer line can be sufficient to damage the lines in the absence of

a bellows in one of the lines to absorb the change in length. In current

practice, no provision for differential thermal contraction is provided for
foam-insulated lines, since the foam cells are sufficiently resilient to

expand and compress to absorb the length change. Thus, the only thermal
contraction which need be considered is the net length change of the metallic
inner line. This effect is discussed in Section 5.2.3 below.

The disadvantages of foam are weight, fire resistance, and long-life

embrittling. Foam is expected to be 25 percent heavier than a vacuum llne

on per foot basis, but the elimination of complex spool connections should
essentially offset _eight penalities. Care must be taken that the foams

selected for use are resistant to burning in short, relatively intense
hydrogen fires. Finally, many existing foams tend to become embrittled

during long exposure to cryogenic temperatures. At the present time, no

" known foams are completely unaffected by such conditions. Long-life foam

development programs are presently underway, and it is expected that by
1985 fully stable foams will be available.
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It is concluded that a foam-insulated cryogenic piping system is the best
choice for use in hydrogen-fueled aircraft. A further comparison of foam ver-
sus vacuum lines is presented in Sect. 5.6.2.

5.2.3 Design description. - This section includes discussion of materials
for use in the fuel lines, thermal contraction, and weight.

5.2.3.1 Materials selection: Liquid hydrogen feed system materials which

have been utilized successfully at Rocketdyne are summarized in Table 20.

The cast aluminum alloy (Tens-50) and the highly alloyed stainless steel
(A-286) materials are utilized mainly for fittings, valve bodies, or other

complex shapes. The candidate materials for feed lines are the wrought
aluminum (6061) alloy and 321 stainless steel. Use of a working-stress level

equal to the lower value of either one-half of yield or one-fourth of ultimate
strength results in the aluminum alloy having the highest strength-to-weight

ratio. Because of its much lower thermal conductivity and thermal expansion
characteristics, 321 stainless steel was chosen for the inner line. 6061
aluminum was used for the outer line.

5.2.3.2 Thermal contraction provisions: Two types of thermal contraction

must be considered for lines which experience temperature changes from

ambient to cryogenic temperatures. First, the overall length of the line may
change, thereby affecting the system geometry and linerattachment provisions.

This length change is on the order of i0 x 10-6 in/in/°C, or 4.57 cm (1.8 in.)

for a 15.24 m (50 ft) run of line cooled from ambient to cryogenic temperatures.

Practically, this length change may be rendered harmless through the provision of
sufficient bends in the llne, a line-space envelope which allows the normal

i portion of the bend to absorb the length change elastically, and compliant
mounting provisions (such as a cable-tray type of approach to supporting the

fuel lines). Bellows might be provided where necessary, but normal practice
has shown that the provisions suggested above are sufficient under ordinary

operating conditions.

The second type of thermal contraction problem is the differential thermal

expansion between the inner and outer lines. When the inner is cooled from

ambient to cryogenic temperature and the outer line remains at essentially

ambient temperature, differential thermal strains may be developed• For the

case of foam-insulated lines, current practice with long, large diameter lines
; in the Space Shuttle has shown that thermal strains are accommodated without

any need for special provisions such as bellows. Vacuum-lnsulated lines, on

the other hand, generally require some type of mechanical strain-absorbing
element such as a bellows. In addition, special configurations of foam-

insulated lines may require large-deflection capability, so bellows arrange-

ments were investigated for this application. Rocketdyne has extensive
experience in cryogenlc-llne applications for rocket engines, such as the

P
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TABLE 20. - CANDIDATE MATERIALS FOR LIQUID HYDROGEN
APPLICATION, 217.2°C (-423VF)

Yield Ultimate *Working

Density Stress Stress Stress

Material kg/em3(ib/fn 3) kPa (psi) kPa (psi) kPa (pbl)

Tens-50 Aluminum - Cast 0.0027 (0.096) 372 317 (54 000) 455 054 (66 000) 113 763 (16 500)

6001 Aluminum - Wrought 0.0027 (0.096) 317 159 (46 000) 413 685 (60 000) 103 421 (19 000)

321 Stainless Steel 0.0079 (0.286) 296 475 (43 000) 1 31C 004 (190 000) 148 237 (21 500)

A-286 Stainless Steel Machined 0.0079 (0.287) 896 318 (130 000) I 365 162 (198 000) 341 290 (49 500)

*Working Stress = Lower value of either 1/2 yield or 1/4 ultimate stress

Space Shuttle Main Engine. The general approach for insulation in the engine
system is to apply foam over exposed lines, joints, valves, etc., wherever

possible. Because the engine operates intermittently and then at very high

fluld-flow rates, more efficient insulation approaches were rejected due to
weight or complexity. A prime purpose for covering the exposed surface is

preclusion of formation of LOX that could lead to an engine fire, and foams
are effective in this role.

At some locations, however, foams cannot be used. The rocket engine is
gimballed, and the cryogenic transfer lines must incorporate sufficient flexi-

bility to permit several degrees of rotation. The bellows units are double

walled with insulation provided by a vacuum in the annulus. This vacuum is

produced by pumping the annulus to i micron, backfilling with pure argon

gas, and sealing. When cryogenic fluid flows in the lines, the argon llqulfles
and a vacuum is produced. To achieve 1 micron vacuum in a bellows unit that

has many slowly pumping regions requires several days of laboratory pumping,

and the approach chosen allows attainment of a good vacuum without requiring
heavy on-board pumping equipment. All lines and bellows are welded wherever
possible.

5.2.3.3 Fuel feed llne weight: Minimum fuel line wall thickness can be

estimated from the hoop stress produced by the contained fluid, using the
relatlon:
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Pd
t -- --

2_
W

where

t = wall thickness

P = internal pressure

_w = working stress

and prior experience for llne fabrlcability. In the case of the selected con-
cept which uses a tank-mounted boost pump, the hydrogen pressure levels are so

low (approximately 317 kPa (46 psla)) as to result in unrealistically thin walls

(approximately 0.003 - 0.008 cm (0.001 - 0.003 inches)) if only hoop stresses
are considered. Rocketdyne manufacturing experience and Lockheed CL-400 expe-
rience indicate minimum wall thickness of 0.041 cm (0.016 inch) are required

for practical considerations.

For the inner fuel-containment llne, 321 stainless steel was chosen because

of its thermal properties and because of ease of fabrication and welding, as

well as proven structural integrity. 6061 aluminum was chosen for the outer
line because of weight saving and compatibility with liquid hydrogen. Table 21

summarizes line-only and llne-plus insulation weights. It is noted that the

total weight of vacuum insulated line is only 4.5 kg (i0 pounds), or 3.4 percent
less than foam-insulated llne.

TABLE 21. - LINE WEIGHT SUMMARY

Weight per m Total Feed System

(ft), kg (ib) Weight per 182 m (596 ft), kg (ib)

Inner Line 0.27 (0.18) 49 (i07) I

L

(0.016 Stainless Steel, l2.54 cm (i.0 in.) o.d.)

Outer Line 0.34 0.23 62 (137)

(0.316 Aluminum,
10._6 cm (4 in.) o.d.)

Total 0.61 0.41 iii (244)

Insulation Weight
Foam 23 (50)

Vacuum 18 (40)

Total Weights
Foam 134 (294)

Vacuum 129 (284) •
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5.2.3.4 Fuel llne summary: The selected f_el line configuration is summarized

in Figure 54. Although vacuum insulation saves a small amount of weight in the
fuel-line, the foam insulated line was se]ect,_d due to safety, manufacturing,

and repair considerations. In addition, sn _,alysis was performed to deter-
mine the difference in cost which might be e_pected between a typical vacuum

Jacketed fuel line and a foam insulated _, _Bn. It was found that the foam
insulated line would cost only 62 perce_ as much as the vacuum design; $39 i00

versus $62 700; thus adding another reaso_ _or selecting the foam insulation

system.

6061 ALUMINUM JACK_.T

0.041 cm (0.016 ,n.) THICK

321 STAINLESS STEEL
INNER LINE

0.041 cm (0.016 in ) THICK

CLOSED CELL FOAM

,., ,10.16 cm (4.0 m.}

Figure 54. - Selected fuel-line configuration.

5.3 Boost Pump

0
In the fuel-system optimization effort (Sec. 5.1.2), it was determined

that the boost pump should provide a minimum 317 kPa (46 psi) boost over the

entire range of fuel-flow, as specified in the schedule of Table 19. The

objective of the boost pump design effort was to select the most attractive
pump within this constraint and other design requirements detailed in
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Sec. 5.3.1. This pump should not only attain minimum incremental _DOC, but

it should also be amenable to long-life and easy maintenance in airline

operations. It has been determined that two- or three-stage centrifugal

pumps operating at speeds up to 36 000 rpm are the leading candidates for
this apnlication. However, there is no data for the operation of this or

any other _ype of flight-weight pump in liquid hydrogen for times approaching
the 8000 hours deslred for airline operations. Development of long-life,

reliable cryogenic pumps of this type appears to rest on development of
satisfactory bearings.

5.3.1 B__esi_nrequirements. - The design philosophy for the bcost pump system
is based uoon the premise that a single pump failure shall not compromise air-

craft s_f_ty. In addition, aircraft operators are reluctant to ground an air-

craft if one boost pump in any of its fuel tanks is incapable of being operated.
In accordance with this philosophy, each tank in the hydrogen-fueled subsonic

transport will incorporate a minimum of three boost pumps. The Justification
for this conclusion is discussed in the following paragraphs.

Although hydrocarbon-fueled aircraft can takeoff and climb tc "rulse al-

titudes with boost pumps inoperative most of the time, hydrogen-fueled air-

craft engines would flameout if the boost pumps failed, due to vaporization
in the llne with loss of pressure. Hence, the boost pump system must entail

a redundancy which precludes loss of thrust from any engine in the event of

pump failure immediately after the aircraft becomes airborne. During takeoff

and initial climb, this philosophy dictates that one tank supplies one engine
and that two pumps in each tank must be operated simultaneously. Thus, with

two pumps operating, a single boost pump failure Just after takeoff could not
cause a loss of engine thrust. The redundancy requirement further dictates

that no two pumps within a given fuel tank can be supplied electrical power
from the same source.

The above requirements indicate that each pump must be capable of supply-
ing fuel at the pressure and flowrate required by one engine at the maximum

flow conditi¢,,which occurs during sea level climb operation. To permit en-

gine performance growth without the necessity of redeslgning the engine pumps,
a margin of 10 percent excess capacity has been specified in the pump func-

tional requirements. A draft of a general functional requirement specifica-

tion for a pump system is shown in Table 22. [

l

i
!

I
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TABLE 22. - FUNCTIONAL REQUIREMENTS

Title: Pump, Fuel Boost, tank-mounted, Plug-in Motor Driven

i. Scope

This document defines the functional requirements for a sub-

merged, motor driven, liquid hydrogen fuel boost pump. The

pump shall have provisions for quick removal and replacement

from the tank without having to remove fuel, plumbing_ or
electrical wiring from the aircraft.

2. Applicable Documents

(to be added) I

3. Requirements

3.1 Ports

3.1.1 Discharge - The discharge port shall be a four bolt flange type

, sized for one inch tubing.

3.1.2 Pressure Sensing - Pressure sensing bosses shall be provided at

each pump for sensing discharge pressure.

3.2 Lubrication - The pump and its driving motor shall be lubricated

with a system compatible with hydrogen.

3.3 Pump Housing - A pump housing shall be provided which permits
removal of the pumping element and driving motor without re-

quiring that fuel be removed from the tank during the operation.

3.4 Check Valves - Check valves shall be provided in the inlet and

discharge passages of the pump housing such that no fuel leakage
can occur when the pump elements are removed.

3.5 Thermal Relief - The pump discharge check valve shall have a

small hole vented to the tank to provide thermal relief.

3.6 Electrical -

3.6.1 Power - The pump motors shall be "Y" connected and shall be

i rated for continuous duty at 115/200 volts, 3 phase, 400 Hertz,
or as an alternate, 270 Vdc power.

3.6.2 Power Consumption - The power consumption shall be optimized for
. the cruise operation.
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TABLE 22 - Concluded.

3.6.3 Electrical Connection - The electrical connection between the

removable element and the pump housing shall be automatical]y

d_sconnected concurrently with removal of the pumping element
and the motor subassembly,

3.7 Performance -

3.7.1 Fluid - The pump shall be compatible with liquid hydrogen fuel.

3.7.2 Operating Pressures - The pump inlet and discharge pressures
shall be in accordance with the requirement of Figure __

3.7.3 Flowrate - The pump flow requirements shall be as dictated by

Figure_.

3.7.4 Environment - The pumping element, housing and driving motor

shall be capable of operating in an environment established by

the presence of liquid hydrogen stored at a pressure of 145

kPa (21 psia) absolute.

3.7.5 Priming - The pumping element shall be capable of priming

itself if initially filled with gaseous hydrogen at start up,

3.7.6 Maximum Pressure - The maximum pressure output of the pump under

any condition shall be compatible with the limitations of the

engine systems.

3.8 Reliability -

3.8.1 MTBF - The mean time between failures per element shall not be

less than 2500 hours using the definition:

_BF = (Cumulative Flight Hours) (No. of Units/Aircraft)
Cumulative Number of Chargeable Failures

3.8.2 TBO - The scheduled time between overhauls shall not be less

than 8000 flight hour's.

3,8.3 Shelf Life - The unit shall have a shelf life of not less than
5 years with a capability of immediate service.

3.8.4 Safety - Safety concepts and design features shall be incorpo-
rated in the pump and drive design. The pump shall be capable

of operating dry in a hydrogen gas environment without hazard.

3.9 Pump Mounting Attitude - The pump assembly shall be mounted

vertical]y with the pump inducer located at the low point in
the storage tank.
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During cruise, when fuel flowrates and the hazard resulting from engine

flameout are considerably reduced, each pump must be capable of supplying two

engines by means of crossfeed for added redundancy and to reduce electrical

power requirements if the operator chooses.

Boost pump performance requirements were determined from the flow-pressure

requirements of Table 19 and as a result of the concept selection trade de-

scribed in Section 5.1.2. The flow-pressure schedule is an unusually wide

range from the standpoint of throttling of the pump output, and this factor

has influenced pump selection considerably. The performance of the boost pump

must be matched to that of the englne-mounted main pump since no englne-to-tank

return line is provided in the hydrogen aircraft. The boost pump must provide

a minimum NPSP of 3.4 kPa (0.5 psi) to the engine-mounted pump with minimum

weight and power consumption.

Other design requirements are determined from the intended mission of the

pump system within the aircraft. The pump must be designed for long llfe,

8000 hours being the baseline goal, The bearings must operate in LH 2 or,

= alternatively, an acceptable thermal isolation system must he found. The pump

drive must operate on available aircraft power systems. Several candidates

were considered, but the choices soon narrowed to electrically driven pumps.

For the evaluation performed here, two aircraft electrical systems were con-

sidered. Present conventional systems utilize 400 cycle power. It is pzo-

Jected that by 1995 commercial aircraft may utilize 270 volt dc power systems,

which have considerable advantages for aircraft applications. Both of these

electrical systems were considered, and the details are given in Section 5.3,3.

The tank-mounted boost pump must be safe in operation and easily maintainable.

The manufacturing costs should be as low as possible consistent with meeting

other operating needs. Finally, the boost pump must meet all general require-
ments of FAR 25.

5.3.2 Candidate pump types. - Four basic candidate pump types were considered:

inducer, vane, piston, and centrifugal. In preliminary calculations, tandem

row inducer pump designs were shown to have the lowest values of ADOC. How-

ever, at the minimum flow condition (flight idle at ii 582 m (38 000 ft) and

M = 0.85), they did not deliver enough pressure rise to meet the specified

main pump NPSP (pressur@ above vapor pressure) requirement of 3.4 kPa (0.5 psi).

This pressure rise might have been met by using the wide range, tandem row in-

ducer design along with 50 percent flow reclrculation around the motor-boost

pump unit. However, this would result in a pump inlet vapor volume fraction

that might be too high for the pump to operate because an inducer pump cannot

pump two-phase flow if the inlet flow coefficient is too far off design. This,

in combination wlth the fact that such a design would have to approach an un-

stable operating condition (which occurs in an axial pump that is operated at

too low a flow) in order to meet the NPSP requirement, resulted in a decision

to use a pump design with a wider operating range capability.

" Positive displacement pumps would have design rotational speeds less than

i0 percent of those of centrifugal or inducer pumps and, therefore, would be
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too hea_w for this particular combination of head rise and volume flowrate.
Included in this positive displacement category are piston pumps and vane

pumps. Additionally, positive displacement pumps typically have large sur-
face areas that require some lubrication. This requirement would likely re-

duce operating life significantly, since liquid hydrogen is not a good lub-
ricant. For the_e reasons, vane and positive displacement pumps were not
considered further. The only rer,aining candidate is the centrifugal pump,

with its wide operating range, forgiving stall characteristic, and relatively

small lubrication requirement. Constant-speed and variable-speed centrifu-

gals were evaluated as to ability to meet flow requirements and ADOC minimi-
zation. This evaluation is described in detail in Section 5.3.4.

For centrifug_l ,_umps that are designed for maximum efficiency, the

performance characterisLics are shown parametrically in Figure 55 for design

point operation (sea level climb at M = 0.38) and Figure 56 for minimum flow

operation (flight idle at il 582 m (38 000 ft) and M = 0.85). It is apparent
that stage numbers and d_sign speeds can be varied over wide ranges to g_ve
whatever combination of characteristics is desired.

From Figure 55, it is appacent that, in this rotational speed range

(less than 40 000 rpm to obtain an inlet diameter greater than i inch so as

to pass the flow), multistaging is necessary in order to operate down to

shutoff (Pm > 345 kPa (50 psi)). With these high efficiency types of designs,
operation down to shutoff is possible if the stage specific speed is greater

than about 3000. However, this may be done at a stage specific speed of only

1150 by designing specifically to obtain a wide operating range. This is
achieved at the expense of approximately a 14 point penalty in efficiency.

It may be concluded that simplicity can be achieved at the expense of per-

formance. Since both objectives a_e of interest here, wide range designs
as well as high-efficiency designs were investigated.

5.3.3 Candidate pump drive systems. - Hydraulic, engine bleed air, and

electrical pump drives were initially considered. Preliminary calculations

Ehowed that the fluid line and system weights necessary for the first two

choices for use with remotely-located tank-mounted boost pumps were prohib-

itively high so that the choice was narrowed to an electrical drive. The
aircraft electrical system may be either the standard 400 cycle ac system

or a 270 volt dc system that has shown promise for future aircraft: applica-

tions. Special controls are required if variable speed is to be used,

whereas they are not if constant speed (which requires pump operation nearly
down to shutoff) is to be used.

Brushless motors were assumed for the 270 volt dc case. The weights of

these motors are shown in Figure 57 along with the weights of the correspond-
ing electronic equipment required to operate a brushless motor over infinite

ranges of torque and speed. In Figure 58 these motor and electronic equip-

ment weights are summed to give the overall brushless motor assembly weights.

For this brushless motor data, four additional assumptions were made: (i)

the stator is hydrogen cooied to reduce resistance and, consequently_ size
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and weight, (2) there is no fluid in the air gap between the rotor and the

stator, (3) hydrogen cooling does not result in any hydrogen vaporization,
and (4) electromagnetic interference is suppressed to existing military

- standards. Regarding these assumptions, it must be noted that keeping the

hydrogen out of the air gap may be difficult to achieve and, in fact, may

not even be desirable. Further investigation and, possibly, some technology
efforts are required to establish the proper approach.

For 400 cycle ac motors, the weights for 24 000 rpm, 2 pole, constant
speed motors are shown in Figure 59. If variable speed is desired, a rather

large inverter weight must be added. This is also shown in Figure 59.
Finally, the efficiencies of these motors are shown in Figure 60. Due to the

electronic equipment losses, a brushless dc motor is slightly less efficient

than a constant speed ac motor. However, if an inverter is'used to make the

AC motor variable speed, the large losses in the inverter drop the overall

efficiency more than i0 percentage points. This is also shown in Figure 60.

5.3.4 Boost pump and drive candidate evaluation. - In order to evaluate
candidate pumps, alternates must first be sized to meet specified flow
conditions.

5.3.4.1 Pump sizing: The pump inlet diameter requirement in the tank was

determined from isentropic equilibrium expansion (from a saturated liquid)

curves for hydrogen (Figure 61) and the maximum hydrogen flowrate per engine
of 0.351 kg/sec (0.774 ib/sec). The resulting line size requirements are

shown in Figure 62 as a function of tank vapor pressure and pump inlet vapor
volume fraction (assuming the flow has reached equilibrium). As shown, a one-

inch diameter hole will pass the flow at a low vapor fraction for a tank vapor
pressure of 145 kPa (21 psla). Since this is about as small a pump inlet as is

practical from a manufacturing standpoint, this value was used throughout the
pump selection procedure.

5.3.4.2 Pump selection: Seven pump-drive combinations were investigated. As

shown in Table 23 three were analyzed with ac motors and four were analyzed
with dc motors. Within each motor category, two of the combinations useo

constant speed motors because there are two methods for obtaining throttling
down to shutoff; (i) using a single stage, wide range pump (which has a lower

efficiency), and (2) using a multistage, high efficiency pump. The other

combination within each motor category used a variable speed motor and, since

varlabl_ speed reduces the required number of stages, a high efficiency type
pump.

o

i
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As shown in the last data block (Minimum Flow) in Table 23, all the

constant speed designs delivered a high pressure rise of 62 psi during mini-

mum flow operation. This high pressure rise provides more than enough net

positive suction pressure (NPSP, pressure above the vapor pressure) to meet

the main pump requirements. However, with a variable speed boost pump, the

boost pump speed can be adjusted so that the pump puts in only enough pres-

sure (approximately) to meet the main pump NPSP requirements. As shown,

this was assumed for the three variable speed cases (configurations 3, 6 and 7

in Table 23). This is also true during cruise. As a result, the boost pump

power requirements are lower for the variable speed cases during off-design

operation. However, in the analysis that was made, the main pump was assumed

to be independent of the boost pump discharge pressure during cruise opera-

tion, as is also shown in Table 23. As a result, the main pump discharge

pressure probably exceeds the cruise requirements for the cases in which a

constant speed boost pump is used. In these constant speed boost pump cases,

variable speed main pumps would have to be used in order to match with the

boost pump during all modes of operation. In summary, exact matching between

the boost and the main pumps can be achieved only if one of the two pumps has

a speed that can be set independently.

As shown in Table 23, configuration 2 (a 5-stage pump driven by a con-

stant speed motor) has the lowest direct operating cost _DOC) of the ac

driven candidate_ and configuration 7 (a 3-stage pump driven by a variable

speed motor) is best for the dc candidates. Configuration 3, which has a

variable speed ac drive, cannot compete with configuration 2 because the

frequency converter required to obtain variable speed with ac is very heavy.

This is not true with dc because the converter is much lighter for dc and

because it is required for both constant and variable speeds. As a result,

the variable speed drive (configuration 7) was the best with dc. Also shown

is that the use of wide range, single stage pumps to obtain simpler configu-

rations results in a decrease in pump efficiency and, consequently, an in-

crease in operating cost. This is particularly true with ac where the lower

design speed results in a lower single stage pump specific speed which, in

turm, results in a greater pump efficiency penalty.

Because the minimum allowable boost pump pressure rise during minimum

flow operation was originally unknown, several variable speed desigBs, each

with a different'pressure rise at the minimum flow condition, were analyzed

to determine their pump and motor efficiencies during minimum flow operation.

The results are summarized in Table 24. These datap in turn, were used in a

heat transfer analysis to determine the resulting NPSP's delivered to the

main pump. Of the candidates listed in Table 24, the one with the lowest

_P minimum 34 kPa (5 psi) delivered 6.2 kPa (0.9 psi) NPSP to the main pump,

which exceeds the requirement. All of the other designs had even higher

NPSP's. As a result, all the variable speed configurations in Table 23

(conflguratio_s 3, 6 and 7) will meet the main pump NPSP requizements.
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5,3.5 Selected boost pump and drive system. - The selection of the final

boost pump configuration is dependent on the engine pump and fuel control
characteristics and is described in Section 5.6.

tk

5.3.6 Boost pump mounting and changing tool. - An important part of this

program has been to find a method by which the fuel pumps may be replaced

quickly and safely, without requiring that the liquid-hydrogen fuel tank be

draxned. In this section, a configuration devised with this requirement

in mind is described. Included are drawings and description of the physical

configuration of the pump mounting, the method of changing the pump without

draining the fuel tank, and a tool designed to accomplish the changing of the

pump. Particular consideration has been given to ensuring the safety and

reliability of the configuration and the method for changing the pumps.

Figure 63 shows the physical configuration of the pump mounting. Three

pumps are placed on a single mounting unit. Since FAA regulations require

that two pump_ be operable for all takeoffs and landings, this choice allows

continuation of missions where one pump has failed at some intermediate time.

! This capability is desirable, since all intermediate stops of a flight may

not be equipped or convenient for changing a cryogenically cooled pump.

The pump and housing are shown in cross section in Figure 63. Each pump 4

has its o_i inlet while the discharge is common for the three pumps. The

pump cavity housing is roughly cylindrical with the inlet located at the

bottom of the fuel tank, so that the fuel may be used entirely. Fuel enters

at the pump inlet and passes through the inducer and three impellers and '

exits through a check valve into the fuel line leading to the engine. The

check valve is provided to ensure that fuel will not be pumped in reverse

direction through a pump(s) that is not operating.

The pump is contained within the housing by means of locking lugs. To

change a pump the insulated panel covering all three pumps is removed and

the pump changing tool shown in Figure 64 is secured to the pump housing

external locking lugs. An "O" ring is provided to seal the tool to the pump

iower housing surface. The helium lines are then attached to the pump

changing tool, the GHe inlet valve and air escape valves opened and the

changing tool (and new pump) purged of air. When this is completed, the GHe

line is connected to the pump purge port located in the pump lower housing

plate. The tool is then rotated 0.785 rad (45 deg) to disengage the lugs and

the pump pulled down so that the pump inlet closure sleeve blocks the pump inlet

thereby preventing the escape of the LH2 in the tank. At this point the pump
GHe purge valve is opened admitting GHe to the top of the pump, forcing the

LH 2 trapped in the pump back into the tank via the small check valve and dis-

charge passage in the pump housing. When this is complete, the operating

handle is turned another 0.785 rad (45 deg) to disengage the closure sleeve

locking lugs a _ the pump is completely withdrawn and placed on the carrier

plate in the changing tool. The new pump is then moved into position by means

of the carrier plate operating rod and the procedure reversed to replace the

pump (no further purging is required however). The purging lines are then removed,

the changing tool removed and the cover plate replaced. The fluid discharge and /
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Figure 64. - Boost pump replacement concept.
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electrical connections are made simultaneously during the final travel of the

pump into its locked position. Since the new pump is warm and quickly cools
to liquid-hydrogen temperature, the bellows-mounted seal is provided to absorb

" the thermal expansion of the pump during its temperature change. Such seals
have proven effective on previous Rocketdyne pumps producing considerably

higher pressure than the approximately 414 kPa (60 psi) maximum required here.

This approach to an easily replaceable pump unit has several advantages.
Because both the pump cavity and the pump-changing tool are purged, there is

no chance foreign matter such as particulates or vapor that might condense or

freeze at liquid-hydrogen temperatures can find its way into the pump cavity,
even if the pump changing operation is delayed with the pump cavity exposed.

Second, the proposed approach ensures the safety of the mechanic who performs

the operation. Should there be any failure during the pump-changing opera-
tion, the tool prevents the escape of hydrogen that might injure the mechanic

or result in a hazardous condition. Third, the mechanism of the pump-changing

tool, together with appropriate guides built into the pump cavity ensures that

the replacement pump will be inserted into precisely the correct position to

seal with the bellows-mounted seal. Finally because the replacement pump is
protected inside the pump-changing tool, there is little chance of its being

damaged prior to insertion. All handling of the pump itself may be accom-

plished within a controlled workshop environment rather than on the field.

It is estimated that a pump may be changed in 10-15 minutes by means

of the approach described here, by one or two mechanics. Because the tool

may be constructed of aluminum alloy, it should weigh on the order of 9.1 kg

(20 ibs). Thus, the replacement pump and tool unit should weigh approximately

13.6 kg (30 ibs) and may be carried by a single person. However, a second per-
son may be required to attach the tool to the lower side of the fuel tank, par-
ticularly if the access is in an awkward position. The tool will become cold as

the pump-replacement operation is conducted through its contact with the cold

pump and the tank. Thus, the mechanic must take the precaution of wearing
gloves during the operation, but no other special protection is required.

5.4 Engine Fuel Pump

The engine fuel pump requirements are to provide a high pressure rise

and to comply with the severe demands of air transport service while operating
in the liquid hydrogen environment represented by a low net positive suction
head (NPSH), cryogenic temperature, and low viscosity. This section discusses

the implications of these requirements for the engine pump, presents the more

significant design trade-offs, provides the results of a selected design

, approach, and recommends certain items for advanced tech_Lology development.
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5.4.1 Design requirements. - The pump requirements start with the engine fuel

flow and delivery pressure requirements which were developed in the engine

study reported in Section 4.0. Table 25 presents a summary of the more sig-
nificant operating conditions for the baseline engine, and tabulates the re- _

qulred fuel flow and fuel delivery pressure for each of these conditions. The

engine LH2 fuel pump is required to meet this set of requirements for engine
fuel flow and delivery, with stable nonpulsatlng flow.

In order to avoid severely penalizing the engine fuel supply system

which delivers LH2 to the engine fuel pump, it is necessary that the engine
pump not require an excessively high fuel inlet pressure. Based upon pre-

liminary studies of the engine fuel supply system, it was agreed to consider
the condition of a saturated liquid at 345 kPa (50 psla) as a definition of

the state of the LH2 at the engine high pressure pump inlet for design pur-
poses. All subsequent pump investigation was based upon this assumed pump
inlet condition for steady state operation. Other pump design requirements

were the following:

• During starts, it was assumed that the engine pump may encounter
significant vapor associated with heat soak _nto the aircraft fuel

line, and that either this vapor would have to be vented, or some

scheme would have to be established for passing it through the pump.

• Pump rotational speed was not constrained, except as it may be by
the selected drive system.

• The pump should be designed to minimize aircraft DOC, associated

with pump weight and required input power.

• The minimum time between overhaul (TBO) upon entry into air transport
service was established at I000 hours.

• Design for flight reliability and flight safety was an overriding
requirement.

• Requirements for vapor venting, and pump thermal preconditioning, or

other unusual operational constraints associated with the use of LH2
fuel were to be eliminated or minimized.

5.4.2 Candidate pump types and selection of preferred concept. - Pump types
which were considered to be potentially feasible for the proposed application
were

• Centrifugal pumps, single or multistage

• Positive displacement piston pumps

• Positive displacement vane pumps.
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References 5 and 6 describe the preliminary development of a five cylinder

piston pump for LH2 service. This work demonstrated the feasibility of piston

type pumps, but also highlighted the problems of leakage and l_fe, and the
necessity to operate at very low speed which resulted in a physically large

pump for a given flow rate. Reference 7 reports similar work with a LH2 p_ton

type pump which was tested by the General Electric Co. In addition, Refer-
ence 7 reports that tests of a cryogenic vane pump were unsuccessful.

Because of these reported limitations of positive displacement pumps in

the existing state of the art, and because centrifugal type pumps for LH2
service have been relatively successful, the decision was made to concentrate
the remainder of this limited investigation exclusively on the use of centrif-

ugal type pumps. Further serious consideration of positive displacement LH2

pumps for air transport service must be preceded by successful detailed in-
vestigation aimed at resolving the presently known design deficiencies of this

type of equipment.

Both single and multistage centrifugal pumps were considered. The single

stage pump represented the simplest design, whereas the use of multistages had
the advantage of greater efficiency since it permitted the pump to operate at

a more favorable specific speed.* Illaddition, the multistage pumps were

smaller in diameter thus reducing the impeller thrust loads, and facilitating

packaging. The following table shows the comparison of size and efficiency
for various numbers of pump stages.

Number Impeller Estimated

of Stage Die Efficiency

Stages Ns cm (in.) %

1 257 13.4 (5.28) 50.5

2 432 9.5 (3.73) 60.2

3 585 7.7 (3.05) 66.0

Based upon this comparison, the 2 stage centrifugal design was selected as a

reasonable compromise between design simplicity, pump efficiency, thrust load,

and packaging feasibility. Subsequent work was based upon use of a two-stage
design.

I19
* Specific speed Ns =_ where N = rpm

Q = gallons per minute
H = head in feet
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5.4.3 Candidate 2_m_. d_ive systems. - Four candidate pump drive systems
were considered:

• • Bleed air driven turbopump

• 270 Vdc electric motor driven pump

• Fixed ratio _haft driven pump

• Variable rauio shaft driven pump.

Figure 65a shows the bleed air driven turbopump system which was considered.

The power source was high pre. sure bleed air extracted from the engine com-

pressor. This was then ducted to a high speed air turbine and the flow to
the turbine was modulated to an :nlet valve. The air turbine was used to

direct drive a centrifugal type LHp pump to provide LH 9 to the engine. One
main advantage of this type of drige was the ease wlth'which variations in

pump speed could be obtained.

Another type of drive which was considered was based upon the recent

development of high efficiency, 270 Vdc electric generators and motors having

at once a capability for both high speed and variable speed. Control flexi-

bility was a main advantage of this type of drive, if it should prove possible

to design a system having a competitive weight. Figure 35b shows a ,chematic

of a 270 Vdc pump drive system.

" The simplest type drive which was considered was a fixed speed ratio

shaft drive, using power extraction from the engine gearbox. This type

drive is shown schematically in Figure 65c. The inability to vary the speed

of the pump was seen as a possible major problem with this concept.

A variable speed mechanical drive can be used to obtain pump speed

variation with a shaft driven system, and this scheme is shown in Figure 65d.

Added mechanical complexity was seen as a possible major drawback for thl8

approach.

The comparative evaluation of these drives is discussed in the next
section.

5.4.4 Engine pump and drive candidate evaluation. - A trade-off analysis was

conducted to select a preferred pump and drive system. In performing the

analysis, engine operating conditions were first reviewed with particular

reference to fuel delivery requirements as summarized on Table 25. Two con-

, ditions were selected as having particular significance in the pump drive

trade-off analysis:
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• Takeoff (Condition 4) was selected as one point for comparison,

since it represented the maximum pump power requirement and hence
would determine the drive weight.

• Start of cruise (Condition 6) was selected as another point for
comparison, since it was typical of long term cruise operation, and

would reflect the influence of pump drive overall efficiency on

engine SFC.

The pump drives to be compared represent two basic types, variable

speed ratio and fixed speed ratio. The first three candidate drive types,
discussed Jn Section 5.4.3, had a variable speed ratio. The variable speed

type has the advantage of permitting adjustment of the pump speed and re-

suiting fuel delivery to more nearly match the engine requirements. This

results in a reduction cf required pump input power at off-design conditions,
such as cruise. A fixed speed ratio pump drive does not permit such a speed

adjustment and hence requires relativeIy greater power input during the off-

design operation, when compared to the variable speed systems. Tables 26 and

27 show summaries of pump operating conditicns for both the variable speed
ratio drives and a fixed speed ratio drive.

These data were then used in developing weight estimates and power re-

quirements for the various drive systems. The attached s,_=ary chart,
Table 28, shows a comparison of the significant cnaracteristics of the al-

ternative pump drives. Drive system overall efficiency is presented for

both takeoff and start of cruise conditions, and also the resulting re-
quired engine power extraction. System weights are shown. The change in
DOC was calculated for the different systems, and is shown tabulated as a

relative ranking. In addition, the various drives were ranked according to
design simplicity, inherent reZiability potential, and system cost.

In evaluating the results of trade-off analyses presented in this su_aary,
it was decided that the delta DOC numbers developed for the start of cruise

condition should be given relatively little weight sinr" the absolute values

were quite small. Primary significance was assigned to system design sim-
plicity and inherent rel_ability potential, with system weight and cost con-
sidered next. On this b_sis, the fixed ratio shaft drive was selected as the

preferred pump drive. T_e bleed air driven turbopump is considered to be the
second most attractive alternative. The 270 Vdc system has the decided ad-

vantage of not requiring a shaft dynamic seal in the pump, but has the dis-

advantage of relatively high system weight. The variable speed ratio shaft
drive has the disadvantage of mechanical complexity.

5.4.5 Pump bearin_ considerations. - The engine EH2 fuel pump bearing system
rep/esents one of the key technical problems in the design of the overall
system. The bearing system must be capable of operating at high rotational

speeds (50 000 rpm); must be capable of carrying high loads, particularly high

• _hrust loads under certain conditions; and must be compatible with the

pumping of LH2.
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Rocket engine turbopumps have typically used rolling element bearings

operating in LH2. The LH2 provides cooling but essentially no lubrication
because of the very low viscosity; lubrication is provided by the use of

teflon type separators, wherein the teflon transfers as a solid film lubri-
cant to the rolling elements and races. These systems have demonstrated the

required speed and load capability but have a demonstrated maximum life of
about I0 hours, although extremely lightly loaded bearings have been run over

i000 hours. Therefore, if rolling element bearings operating in LH2 are to

be used in the engine LH2 pump, it will be necessary to assure extremely light

loading under all operating conditions.

Hydrostatic LH2 bearings, and hybrid bearings consisting of a hyd[ostatic
bearing used in combination with a rolling element bearing have been proposed

and tested experimentally, but have not yet demonstrated the capability of

meeting the engine fuel pump requirements.

Foil bearing systems have been tested by AiResearch with air and cryo-

genic helium, and appear to offer an attractive design alternative for LH2

systems, although the loading would have to be controlled to a low value.

Industrial cryogenic turbomachlnes utilize oil lubricated bearings, both

rolling element and plain journal bearing types, but require strict thermal
" control within the machine to prevent freezing the oil. However, the oil

lubricated bearings have both high rotational speed capability, and substantial

load carrying capacity.

t

Based upon these considerations, a preliminary selection of a bearing

system was made for the proposed shaft driven pump described later. This

system used an oil lubricated rolling element bearing at the shaft drive end
of the pump. The bearing would receive oil from the engine gearbox and would

operate at gearbox temperatures. Careful thermal design of the pump would be

required to successfully use this design approach. The high load capacity of
the oil lubricated bearing would be used to carry the pump thrust loads, which
can be substantial under certain conditions of impeller seal wear and leakage.

In addition, the oil lubricated bearing would carry the local radial loads at
the shaft drive end of the unit. A foil type bearing (or rolling element

alternative) was located between the two pump impellers and operated in the

cryogenic hydrogen. With careful attention to dynamic and hydrodynamic
balance, the loads on this bearipg can be maintained at a suitable low value.

It was considered that this hybrid approach offered the potential for meeting

the engine LH2 fuel pump bearing system design requirements, and it was
recommended for advanced technology development.
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5.4.6 Selected pump and drive system. -

5.4.6.1 General description: The selected engine high pressure pump is a

two stage centrifugal design, and is shaft driven from the engine at a fixed

speed ratio. The pump is designed to provide a flow of 387 _/min (102 gpm)

at a pressure rise of 4723 kPa (685 psid) with a design rotational speed of
50 000 rpm. At the design point, the required shaft power input is 50.5 kW

(67.7 hp) and the required condition for the hydrogen at the pump inlet is
345 kPa (50 psia) minimum at 25°K (45°R) maximum. These limits correspond

to saturated liquid (0 NPSH) at 345 kPa (50 psla). Table 29 provides a more

detailed summary of the pump operating conditions and design chailcteristlcs.

Referring to the pump cross-sectional drawing shown in Figure 66, it
may be seen that the pump rotating group consists of the two impellers and

the shaft, fastened together with curvic couplings and an axial tie bolt.

This construction is typical for modern, small, high speed turbomachines.

The curvic couplings provide the required accuracy in alignment of the pump

rotating parts and, in addition, can be made with convex-convex generated
surfaces, thus reducing the surface contact area and increasing the resistance
to conductive heat flow along the shaft. Minimizing the heat flow from the

warm engine gearbox to the cryogenic end of the liauid hydrogen pump was an
important design requirement.

A splined torsion drive shaft is used to connect the pump rotati_iggroup

to the engine gearbox. The torsion shaft provides the torsional compliance

necessary to isolate the gear tooth generated excitation from the inertia of
the pump rotating group and, in addition, it provides additional resistance
to conductive heat flow. As shown later in Figure 72, a fluid coupling is in-

corporated in the drive train in the engine gearbox. This is to permit the
pump to be disengaged from a windmilling engine in the event of an in-flight
shutdown.

The pump rotating Broup Ls carried in an oil ]ubrlcated ball bearin_ at

the gearbox end, and in a foil type journal bearing running in hydrogen at
the pump end. This bearing arrangement has a particular advantage in that

the high load capacity oil lubricated bearing not only carries the radial

load at the gearbox end of the pump, but also carries all of the axial thrust
load, so that the foil bearing running in the cryog,nic hydrogen at the im-

peller end of the pump is only required to carry the local radial load. With

accurate dynamic balancing of the impellers, the magnitude of this local radial
load can be kept relatively small. This provision for carrying the thrust load

was an important consideration, since the possibility of encountering high

thrust loads always exists for high pressure centrifugal pumps, for instance

if a labyrinth type thrust balance seal were to develop an abnormally high
leakage rate.

¢

The ball bearing is a preloaded duplex pair carried in a ring type
flexible mount. The flexible mount provides the necessary radial compliance

to accommodate the greater than normal temperature range expected for this

application and, in addition, provides some angular compliance for the shaft,
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TABLE 29. - ENGINE MOUNTED, HIGH PRESSURE

LH2 PUMP CHARACTERISTICS

Conditions:

Inlet Pressure 345 kPa (50 psia) (Total Net)

Inlet Temperature 25.2OK (45.4°R) (Saturated)

Discharge Pressure 5068 kPa (735 psia)
Flow 386 _ (102 gpm) (Liquid)

Design Data:

No. of Stages 2
Total Head 7 509.7 m (24 638.13 ft)

Speed 50 000 rpm

First Stage TSH (a) 70.6 m (231.75 ft)

First Stage SV (b) I0 000
Stage Specific Speed 431.5
Overall Efficiency 60.2%
Overall Power 50.5 kW (67.7 hp)

Impeller Diameter 9.47 cm (3.730 in._
Impeller Reynolds No. 2.29 x 101

Impeller Eye Dia. First St. 2.50 cm (0.985 in.)

Impeller Eye Dia. Second St. 2.22 cm (0.875 in.)
Impeller Tip Width 0.14 cm (0.055 in.)

(a) TSH = Thermal Suction Head

NQI/2
(b) SV = Suction Specific Speed = 3/4

(N_H + TSH)

necessary to accommodate the radial compliance of the foil bearing at the

pump end. The ball bearing pair is lubricated by a slight oll mist from the

engine gearbox, and a drain-back port is provided to return any collected
mist to the gearbox. Direct spray lubrication was not planned for this

bearing and may be objectionable because of the possibility for very low

operating temperatures. A dynamic shaft seal was provided to retain the oil
mist in the gearbox, and an overboard drain was provided to accommodate any

oil leakage from the seal.

Because the thrust bearing is some distance from the impellers in the

" selected bearing arrangement, there is some possibility for axial misalign-

ment of the impeller and diffuser center lines. To accommodate this without

a harmful degradation in pump performance, the impeller tip width was made
somewhat larger than the diffuser entrance width.
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The foil bearing located between the two pump impellers is an AiResearch

proprietary design similar to the bearings used in a variety of other high

speed turbomachines. The advantage of the foil bearing is that it offers the

potential for a long service life in the cryogenic end of the pump where oil

lubrication was not feasible. An alternative design approach was to use a

rolling element bearing operating in the cryogenic hydrogen, in lieu of the

foil bearing.

Labyrinth seals are used for controlling leakage and for obtaining

thrust balance across the pump impellers. Referring to the cross-sectional

drawing of Figure 66, it can be seen that the first stage impeller inlet

labyrinth seal is vented to a location about six inches upstream of the pump

inlet. This was done to minimize vapor flashing in the pump inlet, which

would be detrimental to pump performance. The rear labyrinth seal for the

second stage impeller is also vented, for the purpose of reducing the re-

quired design pressure of the hydrogen dynamic shaft seal. A hydrogen vent

is provided in the housing to accommodate any leakage from the hydrogen

dynamic shaft seal.

The pump inlet housing assembly is mounted to the bearing housing

assembly by three radial pins. This arrangement facilitates radial contrac-

tion of the pump housing at cryogenic temperatures, and also reduces the

conductive heat transfer. A thin gage convoluted seal is provided to pre-

clude leakage. The pump assembly is mounted to the engine gearbox by a

standard AND 20002 15.24 cm (6.00 in.) flange.

5.4.6.2 Materials: Materials selected for use in significant parts of the

engine LH 2 pump were:

• Impellers - Inconel 718

• Diffuser housing - aluminum alloy

• Main housing - 300 series corrosion resistant steel

• Rolling element bearings - 400 C corrosion resistant steel

• Impeller shaft - Inconel 718

• Splined drive shaft - Nitralloy

• Oil seal assembly - carbon, 400 C corrosion resistant

steel, and 300 series corrosion

• resistant steel.
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5.4.6.3 Weight: The estimated total weight for the two stage shaft driven

centrifugal pump was 5.9 kg (13.1 ib). This was obtained by detailed estimate
of the weight of the individual components shown on the layout of Figure 66.

5.4.6.4 Performance: Performance maps showing pump head and efficiency as

a function of pump flow and rotational speed are shown in Figure 67.

5.5 Fuel Control System

5.5.1 Design requirements. - The initial undertaking in the design of a
fuel delivery and control system was to review the required functions,

establish a list of inputs needed to perform those functions, and itemize

the required output.

Functions of the engine fuel delivery and control system include:

, • Provide the interface between the engine fuel supply system and

the engine. The control system receives fuel from the engine fuel

supply system within a limited range of thermodynamic states, and
delivers this fuel to the engine in a condition which provides for

efficient combustions and at the proper flow rate for all engine

operating conditions.

• Provide scheduling of compressor bleed valves used during starting,
and compressor variable vane positions.

• Provide scheduling of other valves and/or ignition required during
engine prestart conditioning, and starting, and shut-down.

I Inputs to the engine fuel delivery and control system include:

i Physical Inputs

• Fuel from the engine fuel supply system, provided in accordance with

a flow schedule established by the engine fuel flow requirements,
and in accordance with a minimum pressure schedule established by

the engine high pressure pump suction performance limits.

• Electrical power from the aircraft system for use in the engine fuel

delivery and control system electronic control, for use in operation

of valves and actuators, and for possible use as a pump drive.
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• Engine compressor bleed air for use in the engine compressor

variable vane actuators, and for possible use as a fuel turbopump
drive.

• Engine shaft power for possible use as a fuel pump drive.

• Heat for use in vaporizing and heating the hydrogen fuel, to be

obtained from the aircraft environmental control heat load, from

the engine turbine cooling air, ard from the engine exhaust.

Informational Inputs

• Command signals, including

Electrical system master switch

Engine fuel system purge operation
Engine start signal

Engine power level setting

Engine stop signal.

• Informational inputs from the engine, including

Fan rotational speed •

Compressor rotational speed
Compressor inlet total temperature

Compressor inlet total pressure

Compressor discharge total pressure

Compressor variable guide vane and stator vane positions

Low pressure turbine inlet total temperature, or exhaust gas total
temperature.

• Informational inputs generated within the fuel delivery and control

system, including

Pump inlet housing temperature
Pump discharge pressuce

Pump discharge temperature

Pump rotational speed

Fuel flowmeter rotational speed

Outputs from the engine fuel delivery and control system include:

Physical Outputs

• Fuel delivered to the engine combustor, in a condition which provides

for efficient combustion, and at a proper flow rate for all engine
starting, transient, and steady state operating conditions.
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• Vent gas during cool down or purging operations.

• Pump shaft dynamic seal vent gas.

Informational Outputs

• Engine speed or thrust indication*

• Scheduling of compressor bleed valve

• Scheduling of compressor variable vane positions

• Signals for monitoring of fuel delivery and control system

significant parameters, such as fuel pump rotational speed,
control valve positions, etc.

5.5.2 Candidate concepts. - Candidate concepts for the fuel control system

which were studied and evaluated were based on use of the following pump

drive systems:

• Bleed air driven turbopump system

• 270 Vdc motor driven pump system

. • Engine shaft driven pump system, fixed speed ratio

• Engine shaft driven pump system, variable speed ratio.

System schematics for these concepts are shown in Figures 68 through 71.

In each of these systems, electronic control circuitry was used in conjunc-

tion with the fluid pumping and metering elements. This use of electronic

circuitry is consistent with modern engine design technique and will prob-
ably be used exclusively on this class engine in the 1985 time period.

All of the schemes use a flow modulating and shut-off valve downstream
of the heat exchangers to reduce the effect of heat exchanger capacitance

in fuel system transient performance. A turbine type flowmeter is included

for fuel flow measurement upstream of the flow modulating valve.

5.5.3 Selected system.

" 5.5.3.1 Description: Selection of the design of the fuel control system

was dependent on the choice of drive for the engine fuel pump. With the

selection of the fixed speed ratio engine shaft driven pump system as

• * Other engine monitoring parameters are not considered part of the engine
fuel delivery and control system.
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discussed in Section 5.4.4, the control syste= represented in Figure 70

became the preferred concept. Figure 72 shows the actual design arrange-

ment of the components in the overall aircraft system. A description of

the operation of this system is discussed in the following section.

5.5.3.2 Control response considerations: With the design arrangement

shown in Figure 70, the potential problems associated with the effects of

the large heat exchanger volume capacitance and the H 2 fluid compressibility
are minimized. It is expected that control response characteristics com-

parable to that of a conventionally fueled engine can be readily achieved.

Note that particular attention will have to be paid to the design and

development of the fuel flow modulating valve and the turbine type flowmeter.

5.6 Engine Fuel Supply System Final Design and Performance

The critical problem in the delivery of fuel from the tank to the engine

is to ensure that the engine mounted pump is delivered a supply of l_quld

hydrogen at a pressure such that no significant amount of vapor is present

(two-phase flow), although it is estimated that at low speeds the main pump

could handle a vapor-to-volume fraction of approximately one half. This

means that the heat added by the tank boost pump, motor, supply llne, valves,

etc., cannot exceed the fuel saturation enthalpy associated with the pressure

at the engine pump inlet (zero net positive suction head). Since the heat

added by the lines and system is proportional to the area of the llne and

inversely proportional to the flow rate, the lowest flow rate is the most

critical. The heat added by the boost pump is proporticnal to the pressure

rise buu inversely proportional to the pump efficiency. A high p_essure £1se

across the boost pump is desirable to suppress vaporization in the delivery

system but the pump efficiency corresponding to the pressure rise must also be
considered.

Another important consideration which influenced the system configura-

tion and concept was the deslrabili=y of being able to use the hydregen vapor

in the delivery system during engine start. This would preclude the necessity

for either having a long vapor return llne back to the tank from the engine

or providing a method to safely vent or dump the vapor. In addition, the

residual vapor would then be useable in the engine. This could be accom-

plished by designing the engine fuel control qystem to handle vapor during

the starting transient condition. The pressure required to insure fuel

delivery to the engine and into the combustor could be supplied by the boost

pump which is immersed in llquid. The increasing flow rate @uring accelera-

tion from starting to ground idle would chill down the system so that liquid

hydrogen would be available at the engine pump prior to reaching Idle.

The above concept was pursued during the course of the study and was

selected as the final approach described in the following sections.
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5.6.1 Heat added to hydrogen. - During system operation, the liquid hydrogen

temperature at the engine pump inlet will be higher than the tanked value due
to heat inputs from the pump and (submerged) electric motor as well as heat "I

input along the length of the fuel feed line. The primary concern is to en-

cure that the hydrogen vapor volumetric fraction never be greater than 0.5 at

the engine pump inlet under all operating conditions. In actuality, it is
desirable to ensure that some excess in engine delivered pressure compared to

inlet saturation pressure is maintained. This excess pressure is usually

referred to as net positive suction pressure (NPSP) and a minimum value of zero

was specified for normal operations.

The hydroger: saturation pressure at the engine pump inlet cqn be ob-
tained from the cslculated fluid enthalpy at the inlet in conjunction with

hydrogen property tables. The engine inlet pressure is simply the ta,k

pressure plus the boost pump pressure rise minus the feed line pressure
loss. Therefore, we have

NPSP = PENG - PSAT = PTANK +Z_PPuMP "'ZXPLINE - PSAT (i)

The engine pump inlet enthalpy is equal to the hydrogen entha!py at tanked
conditions plus the enthalpy rise attributed to line, pump and motor heating,

respectively:

q

heng = hTANK + &h L + _hp + Z_ M (2)

: The enthalpy rise due to line heating _h L is determined simply from:

Q/L • L

_h L = . (3) '

WH 2

The enthalpy rise due to p.',,pheating is given by:

&h = _P " - + 0.017 (4)
P

which for liquid hydrogen with a density of 4.3 Ib/ft 3 and using the proper
J

conversion factors to obtain consistent units reduces to:

_%h = _P ' 0.0412 i _ + 0.017 (5)
p
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where _P is pump pressure rise (psi) and qp is pump efficiency. The
numerical factor 0.0175 accounts for compressibility effects on the

hydrogen internal energy.

i

The fluid enthalpy rise due to the submerged electric motor inefficiency is _

given by:

_hM 778 WH2

where hp is motor horsepower and qM is motor efficiency.
i

5.6.2 Final system selection. - The above relations, together with the line,

joinu, and valve heat leaks were used to determine conditions during the

critical ground start of the engine. The boost pump selected to give max-

imum efficiency at low flows is a three staEe, 270 volt dc driven centrif-

ugal, variable-speed pump as shown in outline in Figure 73. This pump is the

same as configuration 7 in Table 23.

The assumptions used in the analysis were:

• Starting flow rate is 0.011 kg/sec (0.024 Ib/sec)

• The longest line run was used (tank #4 to engine #4)

• Compartment temperature = 54.4°C (130°F) at sea level

• One inch diameter stainless steel line

• Line is chilled down at engine start.

The objective was to compare foam versus vacuum insulation systems for the

engine fuel supply llne.

Since the in-service reliability of light weight vacuum jacketed line

is unknown, but based on experience with static ground equipment is not

expected to be very high, the foam jacketed concept was included in this

analysis. The foam line consists of concentric tubes filled with 1.5 inches

of closed cell foam with suitable bellows and connectors. Being a passive

. system, the consequences of a leak into the closed cell foam space will not,
in the short term, increase the heat leak rate and it is expected to be more

reliable and rugged overall.

The analysis was based on the boost pump and motor characteristics

" shown in Figure 74. Transient conditions during start are shown in Figure 75.

Heat rejection to the fluid from the pump and motor as well as line, Joint,

and valve heat leaks, are included in the fuel temperature rise.
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L 11.43 cm

_" (4.50 in.) dia

\.

28.24 cm

(11.12 in.) j__

17.15 cm __

(6.75 in.) dia

POWER 270 Vdc
PUMP WEIGHT 0.508 kg (1.12 Ib) 3-STAGE, VARIABLE SPEED CENTRIFUGAL
rpm 36 000 max.
MAX. kW (hp) 2.36 (3.16)
SYSTEM WEIGHT 28.8 kg (63.5 Ib)

4

Figure 73. - Selected LH 2 boost pump.
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Figure 75. -Pump characteristics (transient).
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Figure 76 shows the pump NPSP, V/L volume ratio, and percent of vapor at

the pump inlet versus fuel flow. Also shown is the effect of GH? leakage
into either i or 2 of the average 3 m (i0 ft) long vacuum-jacketed line see-

: tions. Since it would not be reasonable to ground the airplane with a

single vacuum leak, the assumption must be that a second leak could develop.

either inflight or at a location where repairs were not possible. With this
assumption, the performance of the foamed li_e is seen to be nearly identi-

cal to the vacuum line with a GH2 leak in two 3m (i0 ft) sections. Since the
weight of the foamed line is only about 10-15 percent greater, it would

appear that the foam concept is more attractive in safety, manufacturing,
reliability, original cost and maintenance.

In the case of an unchilled vapor filled line, the engine acceleration

to idle will take a longer time than with a chilled line since the engine will

not accelerate until the engine pump receives liquid H2 (V/L = 0). This time
could be reduced by using the intertank transfer system to increase the boost
pump flow rate.

5.6.3 Final system configuration. - The final system layout and details are

shown in Figure 77. The lines are foam insulated and protected by an outer

aluminum cover which would contain any H2 leakage in the inner line. All i
components are purged and ventilated. An outer shroud (unpressurized) is

provided where the fuel line runs through pressurized compartments The• i
motors and actuators of all shutoff and crossfeed valves can be removed i

without disturbing the line itself• Pump replacement can be done with LH2 i

fuel in the tank. (See Section 5.3.6). 1

i5.6.4 Engine operational procedures• - The procedures and requirements for I

operation of the engine, and its fuel delivery and control system, are as
follows: !

• Initial Condition

Engine is stopped

Electrical system is de-energized

Engine fuel flow control valve is closed

Tank shut-off valve is closed

Boost pump is not running

Entire fuel system down stream of the liquid hydrogen tank has

reached a soak temperature of 311°K (560°R). The system is full of
" hydrogen gas at a temperature of 311°K (560°R), and the pressure has

relieved to the 145 kPa (21 psia) tank pressure through a reverse flow
check valve in the tank shut-off valve.
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Figure 76. - Engine pump inlet conditions.
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• Start Procedure

Energize engine electrical system. This automatically opens the
high pressure pump drive fluid coupling fill valve. The valve

latc_,e_ open and will remain open until electrically energized
to close.

Open tank shut-off valve.

Start boost pump. Since the boost pump inlet is immersed in liquid
hydrogen, the boost pump will pressurize the hydrogen gas in the

line up to the engine fuel flow control valve to approximately
290 kPa (42 psia).

Start cranking engine. Engine oil pressure develops during cranking,

and fills the high pressure pump fluid drive coupling thus driving
the pump.

At i0 percent speed, turn on ignition, move throttle to Idle position

and the engine fuel flow control valve starts the admission of fue±

to the engine fuel injector.

Engine cranking continues until the engine is self-sustaining,
and then the cranking is terminated.

Engine continues acceleration to Idle speed.

Continue operation at idle speed until chill-down of the engine

high pressure pump is completed. The time required for chill-down

is approximately one minute. After chill-down of the engine high
pressure pump is completed, normal engine operations may be
commenced.

• Ground and Flight Operation

System responds to command inputs in a manner similar to that of

a conventional Jet A-fueled turbofan engine.

• Shut Down

Reduce eng=ne speed to idle.

Move throttle to idle cut-off.

De-energlze engine electrical system. This automatically energized the
hlgh-pressure pump drive fluid coupling fill valve to close. The valve

latches close, and will remain closed after the electrical system is de-

energized. With the valve closed, the fluid drive coupling drains, dis-
connecting the pump drive.

Turn off boost pump.*

Close tank shut-off valve.

*Because the engine pump interstage bearing operates in the hydrogen working
fluid and is dependent upon it for cooling, and in the case of the foll bear-

ing is dependent upon it for load carrying ability, it is desired to maintain

boost Dump pressure until after the engine pump fluid coupling has disconnected.

This time delay in turning off the boost pump can be short, perhaps 10-15 seconds.
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• P_ocedure After Aborted Ground Start

Turn off ignition.

Crank engine for a nr_A_=_-_ time _o venLilate englne and
remove any hydrogen vapor.

Determine reason for aborted start and take corrective action if

required.

Start engine using normal start procedure.

• Procedure for In-Flight Shut Down

Reduce engine speed to Idle.

Move throttle to idle cut-off.

De-energlze engine electrical system. This automatically energizes
the hlgh-pressure pump drive fluid coupling fill valve to close.

With the valve closed, the fluid coupling drains permitting the

fuel pump to stop, although the engine may be windmilllng at
moderately high speed.

Turn off boost pump.

Close tank shut-off valve.

• Procedure for In-Fllght Start

Open tank shut-off valve.

Start boost pump.

Energize engine electrical system. This automatically energizes

the high-pressure pump drive fluid coupling fill valve to open.
Since the engine is windmilling, oil pressure is available and

the coupling fills thus driving the pump at windmilling speed.

Initiate ignition.

Move throttle to idle position.

When engine is started and operating normally at flight idle, move

throttle to the desired power setting.

5.7 Technology Development Required

• The study of the engine fuel supply system identified and brought into
focus various areas uf risk in the technnlogy where advances in the state

of the art are either necessary or highly desirable to facilitate the timely
and economic development of a full scale system. Thls section lists the "

more significant of these technical risk items, and presents recommenda-
" tions regarding appropriate advanced development, r
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5.7.1 Engine fuel pump. - The engine high-pressure pump bearing system is

a major technical risk item requiring advanced development. The current

state of the art in advanced high pressure LH2 pumps has evolved mainly
from the development work which _as been done on rocket engine turbopumps.
As a result of this work, the problems of designing for pump performance

(bead, flow range, and suction performance), and also the problems of

mechanical design and materials selection for cryogenic service, have been

adequately resolved and may be considered state of the art.

However, all rocket engine components inherently have a very short

mission duty cycle. This has resulted in very short specified life require-

ments, even for reusable equipment such as Space Shuttle, where the main

engine design life requirement is I0 houra and i00 missions. On the other
hand, air transport equipment such as that being considered in this study,

is at the other end of the life requirements spectrum, with airliner
utilization running to i0 hours a day operation, equipment overhaul periods

of 5000 hours minimum being conm_on, and equipment service life of 40 000

hours being typical.

This vast dl;ference in life requirements poses a specific problem in

that the rocket engine turbopump bearing technology is not transferable
since the bearing systems developed for rocket engine turbopumps can only

meet the very short life requirements and do not have the inherent potential

for development of the long life capability required for air transport
service. This limitation of life development potential is well demonstrated

by the vast amount of work which has been necessary to achieve even the

limited life required for rocket turbopump applications.

For these tea ns, it is considered that the most critical problem in

the dev=ivpme_., of a high-pressure LH2 pump suitable for airline service
is th !,um -_ring system, and it is recommended that the newer approaches
described _,luhis report be investigated.

It should be noted that these comments apply only to the bearings of

the high-pressure LH2 pump, which are relatively highly loaded and which
operate at high rotational speed. The very lightly loaded bearings of a

LH2 fuel boost pump, which run at lower rotational speed, can probably
be developed adequately for airline service as a further evolution of the

existing design approach, using rolling element bearings and separators

having a dry lubricant capability.

It is recommended that engine high-pressure pump bearing system ad-
vanced development be undertaken, and that such advanced development start

with the preliminary design of an engine high pressure pump in sufficient

depth to establish the bearlng requirements. This would then be followed

by design, fabrication, and feasibility testing of a bearing system having !
the objective of meeting t_ese requireme,ts. Initial bearing tests would

be in a bearing test rig, followed by tests in an actual pump.
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5.7.2 Engine fuel control system. - Operation of the cryogenic hydrogen

fuel control system presents several new problems such as starting with

the supply line full of vapor, the necessity for extremely rapid chillI

down of the engine high pressure pump, the probable necessity to control

the flow of fuel in both the vapor and liquid states, and the presence of

significant volume capacitance in the fuel system combined with the use of

the relatively compressible H2 fuel. These new problems suggest the de-

sirability of analysis and computer simulation of the selected engine fuel

delivery and control system, to verify performance capability including

flow, pressure, and thermal transients. Following analysis and computer

simulation, fabrication and test of a breadboard system would be highly
desirable.

5.7.3 Overall system. - It is desirable to make a preliminary investigation

of systems interactions involved in utilizing H 2 as a heat sink for cabin
air conditioning, engine oil cooling, engine stator vane and rotor blade

cooling, in combinatior with the engine exhaust fuel heating concept. This

may be done by computer simulation, and particular attention should be paid

to identifying critical off-deslgn conditions.

J

I
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6. FUEL SUBSYSTEMS

The aircraft fuel subsystems, illustrated schematically in Figure 78,
consist of all fuel-oriented systems up to the interface at the engine fuel

control system. These systems cover the functions of storing fuel, fueling/
defueling, supplying fuel to the engine and auxiliary power unit (APU),

transferring fuel, pressurizing/venting, Jettisoning, and purging and/or in-

erting system_. These systems are discussed in the following paragraphs.

6.1 Fuel Tank Arrangement

Fuel is stored in thermally insulated tanks located within the fuselage.
There are four separate tank compartments, corresponding to the number of

engines, in accordance with the convention that each engine be fed from an

independent source during takeoff and landing. They are numbered sequentially
beginning at the forward end of the airplane. Tanks i and 2 are located

between the flight station and the forward end of the passenger compartment.

Tanks 3 and 4 are located aft of the passenger compartment. Each tank has a

nominal usable fuel capacity of 6985 kg (15 400 Ib) of LH2. Tanks i and 2 in
the forward storage area are separated by a bulkhead which isolates the liquid

fuel in each of the tanks. However, a vent system which is common to both
tanks maintains an equal ullage pressure on both sides of the bulkhead.

Tanks 3 and 4 are separated by a similar bulkhead in the aft fuselage area.

6.2 Fueling and Defueling

A fueling system shown in Figure 79 is provided which interfaces with

the airport ground supply through two adapters located at the aft end of the

fuselage below the vertical tail. Liquid hydrogen is supplied to the fuel-

ing adapter [Appendix B, Figure B-2) and displaced hydrogen gas from the

aircraft fuel tanks is returned to the airport liquefaction facility for re-
cycling by means of the vapor recovery adapter (Figu e 80). A 5-1nch vacuum-

insulated fueling manifold conveys fuel to Tanks 2, 3, and 4, reducing to a

3-inch manifold between Tanks i and 2. Fuel is discharged into each tank by
means of a perforated fueling manifold located near the bottom of the tank

below the normal reserve fuel level. The perforations are sized to maintain a

low discharge velocity to minimize turbulence in the bulk liquid.

The fuel level control system consists of a shutoff valve (Figure 79)
actuated by a signal from a level sensor which terminates flow to each tank

whet, it is full. When a given flight requires less than full tanks, the

shutoff valves are actuated by a signal initiated by bugs on the tank fuel

quantity indicators, located in the aircraft flight station, which have pre-

vlously been set at the desired fuel quantity. The fuel quantity can also
be selected at the refueling panel in the tail (Figure 79).
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DET. A - FUELING VALVE INSTL.

I

Figure /9, - Continued.
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Vapor released during the fueling operation flows through the absolute

tank pressure regulators (Figure 79) into the common vent line where it is

diverted to the vapor recovery adapter by means of a vent bypass valve built

into the adapter and operated by the actuating linkage of the adapter (See

Figure 79). The absolute pressure regulators prevent flashing of the fuel by

maintaining the tank pressure above the saturation pressure of the delivered

fuel.

The fuel tanks are protected from overpressurization in the event that

a shutoff valve fails to close when the tank is full by limiting the ground

system delivery pressure (Reference 2) and by sizing the vent lines to allow

liquid hydrogen overflow through the vent system to the vapor recovery adapter.

Defueling is accomplished with both fueling and vapor recovery adapters

connected to the airport defueling facility (Reference 2). The fuel transfer

and refueling llne tank isolation valves are then opened and the fuel level

control valves are closed. Operation of the tank boost pumps will start the

defualing operation. To maintain tank pressure above outside ambient, some

heat may have to be added to the stored hydrogen by means of the fuselage-

mounted tank pressurization heat exchanger which utilizes a calrod heating

element to convert liquid hydrogen to gas. The tanks may be defueled indl-

vldually or simultaneously.

6.3 Engine Fuel Supply

The engine fuel supply system is shown in Figure 77. Each engine is l
normally supplied fuel from its identically numbered fuel tank. In the

event of engine failure, fuel from the tank which normally supplies the i,

failed engine can be made available to the operating engines by a crossfeed

system. However, the crossfeed system is not required for aircraft center

of gravity control as will be discussed in 7.2, Operational Requirements

of the Liquid Hydrogen Fuel System. A significant feature is the location

and arrangement of the crossfeed valves. T|._v are contained in one assembly

for convenience in servicing and also to preclude long sections of transfer

lines which would contain vapor and could result in engine flameout when

switching from direct to crossfeed.

Lines leading to the e_glnes are located in the wing box for protection

and isolation. The lines are foam insulated within a protective metal outer
tube. Evacuated double bellows lines with an outer braided cover are used

where required for flexibility.
i

A surge box located at the low point in each fuel tank houses three

boost pumps which supply fuel to each engine. The surge box traps fuel in

the vicinity of the pumps to minimize unusable fuel, and to ensure its

availability during unusual transient maneuvers. The present design util- iizes a presurized accumulator downstream of the pump check valves to pre-

clude engine starvation if the fuel migrates to the top of the surge box

during negative or zero g flight.
6

I
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The reasons for selection of a three-pump system :ather than the two-pump
arrangement used in conventional hydrocarbon-fueled aircraft are discussed in
5.3.1.

6.4 Auxiliary Power Fuel Supply

The APU is supplied liquid fuel, normally from Tank No. 2, but available

from any tank by crossfeed. During the initial APU startup, before electrical

power is available to the tank-mounted boost pumps, it is expected that the
normal tank pressure 145 kPa (21 psia) will preclude the need for a separate

APU tank-mounted boost pump. It is also possible that an external combustion

engine may be a feasible method of driving an APU. This represents a change
from a statement in Reference 1 which had indicated that the APU might operate

on boiloff hydrogen. More detailed studies showed that this was impractical
because of the wide variation in boiloff rates, and also because of the high

compressor power required to raise the gas to conventional APU combustor pressure.

6.5 Fuel Transfer

I Fuel transfer between tanks csn be accomplished by opening the appropri-

ate fuel transfer valves and fuel level control valves while operating the
tank boost pumps. A fuel transfer system is incorporated to preclude trap-

ping of fuel in any tank should the feed line tank isolation valve fail in
the closed position. The effect of this type of failure on center of gravity
travel is discussed in 8.3.3, Fuel Management.

6.6 Fuel Jettison

Inasmuch as this airplane meets the climb requirements of FAR 25.1001

(b) and (c) with full fuel load, a fuel Jettison system is not legally re-

quired. However, some situations can be postulated in which a Jettison sys-

tem might be desirable. For example, if a wheels up landing is anticipated
fuel could be Jettisoned to reduce the landing speed. Assuming a full fuel

load and climb to 3048 m (I0 000 ft) the time to Jettison fuel down to the

reserve level would be approximately 1.4 hours. The Jettison arrangement could
be as shown on sheet 1 of Figure 79.

6,7 Tank Vent and Pressurization System

The forward pair of tanks and the aft pair of tanks have separate pres-

surization and vent systems but share a common overboard vent system down-

stream of t,e pressure regulators (see Figure 80). The tanks are maintained
at an absoidt, pressure of 145 kPa (21 psia) by a primary absolute pressure

regulator located Just downstream of the point where the vent line emerges

from each pair of tanks. A secondary pressure regulator set at an absolute

pressure of 159 kPa (23 psia) is mounted in parallel with the primary regu-
lator to protect the tan_ from exca=sive pressure in the event of failure of

183

D

1978023142A-093



t

" ORIGINAL PAG_ IS

1978023142A-094



VAPOR SEAL' / ,v.,. z,;qT_ .... ff;_
/VACUUM JACKETED LINE ASSY__ /. ,_/"_<J_\- " _,-

/ - _ ,i /L./_ X X. COUPLING-

/_-'- SLEEVE AND "_// / \ _ SEE DET.

/ / . / / _ _ ___-'-"-"-_ FOAM FILLER

/ ,-w=.ox / / \ \
\.,,,',"_NSULATION J /

CLOSE OUT
TANK WALL--"

1 DET. B - TANk PRESSURE CONTROL
VALVE INSTL.

ABSOLUTE REF. BELLOWS FPRESS. REGULATOR ASSY. (145 kPa (21 psia))
AND SERVO VALVE ASSY. /
(145 kPa (21 psia)) / j--"IUAL DIAPHRAGM (CRES.)

- REMOVABLE "---_ /
• ,_. JJ_r= ' IDE BUSHING

. _;_T._._.r_,[;_" _'_ /--_ OVERRIDE SOLENOID (N.O.)

34.3cm 13.5 in.) _,.?_'_l/_d!_-'_., ORIF:ICE (PRECHECK)

'-"41-""r r, ,- ;"

FROM i- 41- /" TRAVEL '_' 7 "SYM _E I

y;. l, , ,_-/ _ "_---._AC'rUATOR:

POPPET VALVE j I . ' ' r" _ D.C. MOTOR
I /.t: l- ---_ ..._--_/_ _ EXIT PORT _._ AND RED. GEAR

INSULATION NOT i /23.6 c2 I 8.1 cm (3.2 in.) PURGE VALVE ASSY.

i SHOWN FOR CLARITY--_j (9.3 in.) --/;6,9 cm (-'"_2.4in.) --

PRESS. RELIEF ASSY. (159 kPa (23 psia))

VIEW C.C - PRESS. CONTROL VALVE

t

Figure 80. - Continued.

185

1978023142A-095



ALTERNATE VENT BACK
PRESSURE VALVE
24.1 kPa (3.5 psig)

_ .

FROM TANKS -"

i

i I

r' -_J

/ / .SOLENOID OVERRIDE
- PREVENTS VALVE
VENTING DURING REFUEL

TO TAIL VENT "_._ _
/

/
/

VENT ADAPTOR

SEE DET. E PANEL /
/

./
!

/
DET, D - ALTERNATE VENT INSTL.

t

Figure 80. - Contt_01ed.

18b

1978023142A-096



197809.R149A_Nq"Z



I

VACUUM JACKETASSY.

CLAMPS141

OUTER TUBE RIGID TUBE COk,.LING /-- /
12.7 cm(5 in.) OIA x 0.041 cm

(o.o16in.)WALL/ END CLOSURE / / / RUBBERSEALS(2)

/ - ,J-l-_/
Eitlh .....

ILAYER MYLAR/FIBERGLASS

EVACTUATED INSULATION FELT INSULATING SLEEVES(2)
INNER TUBE -

10.16 cm(4 in.) DIA x0.041 cm DET. F - TYPICAL VACUUM SYSTEM
(0.016 in.) WALL RIGID JOINT

NACA FLUSHVENT SCOOP

j--_

b
_ _

I AIRFLOW

PRIMARY VENT

SE _ / BACKPRESSURE
RVO VALVE ('--- _ VALVE (10.3 kPa(1.5 p$i9))

.,. , ....

(TEFLONCOATED) , . ,_ -_-_. ----_ ..... " "

OVL:RRIDE
SOLENOID (N.O.) I

DET. G -- PRIMARY VENT INSTL. FROM TANKS (PRECHECK)

Figure 80. - Concluded. , ,,-/
188 / -

/

1978023142-098



the primary regulator. A purge gas discharge valve for use during the initial

tank fill and during tank purging for repair or inspection completes the valve

assembly at this location. If the tank absolute pressure drops below 124 kPa
(18 psia) when the boost pumps are operating, as might happen, for example, if
a takeoff is attempted immediately after the tanks are filled with subcooled

hydrogen, a backup absolute pressure regulator allows liquid flow normally sup-
plied from Tank No. 4 to be evaporated at the fuselage-mounted tank pressuriza-

tion heat exchanger. Tank pressures are, thus, always maintained above the
minimum level.

Vent boxes located within Tanks 2 and 3 act as liquid traps to preclude

liquid from passing overboard through the common vent line. A drain valve

at the bottom of each trap allows the liquid fuel to drop down into the tank
below when the fuel level is below the float in the drain valve. Each vent

box communicates with the tank it serves through a single vent line with its

inlet in the ullage bubble above the point of intersection of the fuel sur-
faces for maximum pitch attitude extremes with full fuel tanks. This repre-

sents the simplest and most reliable vent design. If detailed aircraft attitude
studies reveal that no single inlet location will always be void of liquid

fuel, an alternative design is available which incorporates two inlets in each
vent line. The inlet which is remote to the vent box would be open at all
times and the inlet near the vent box would be closed by means of a float-oper-

ated vent valve when under fuel but open when not covered by fuel. The added

complexity of this system is to be avoided if possible since it places moving
components within the fuel tanks which would ultimately require maintenance.

The common vent line downstream of the absolute pressure regulators

serves a dual purpose. In flight, gas relieved through the pressure regula-

tors is conveyed through the vent line to a llghtning-protected overboard
vent mounted in the vertical stabilizer. The overboard vent assembly in-

cludes a servo operated back-pressure valve set at 10.3 kPa differential

(].5 psig) to prevent air from being drawn into the vent where it could con-
stitute a hazard. During fueling operations, the common vent serves as a

means to recover large quantities of boiloff gases by routing them back to

the vapor recovery adapter so that they can be recycled by the airport hy-
drogen liquefaction and distribution system. In the event of the failure

of the primary vent an alternate servo operated vent set at 24.5 kPa (3.5

psig) is located in the tail cone area (Figure 80). This valve is closed

by an override solenoid to prevent opening during fueling.

6.8 Nitrogen Inerting System

An investigation was made to determine the characteristics of a GN2

inerting system which might be required to inert the space surrounding the
nonintegral fuel tank (candidate A), and the engine supply system down to

and including the engine pump and fuel control. The ground rules established
for this study were:

| i. The purge system is a flight dispatch item and must have cual redun-

dancy in all functional aspects.
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2. The quantity of N2 carried must be sufficient to meet the most
severe of the following: (a) one flight of I0 190 km (5500 n.ml.) +
alternate destination + ground hold, or (b) two flights of 4050 km

(2187 n.mi.) wlth ground hold and diversion to an alternate destination.

3. The minimum purge space pressure must be at least 1 psig above
ambient to preclude ingestion of air due to local flight pressures
above ambient free stream.

4. Leakage rates through fuselage structure based on improved L-1011

production aircraft experience.

5. N2 purge system must prevent air ingestion during maximum emergency
rate of descent.

6. N2 to be stored as a liquid.

The most difficult aspect of the analysis was to predict what leakage

might occur in a service aircraft. As a starting point the functional test

procedure (FTP) required of all production L-lOll's was reviewed. This

requires that after blocking all valves, vents, and drains, the alr leakage
should not exceed 39 kg/mln (87 ib/min) with a cabin differential pressure of t

48 to 55 kPa (7 to 8 psi). Correcting this rate for leakage area, one psi dlf-

ferential and N2 properties and temperatures, it was calculated that approxi-
mately 4990 kg (ii 000 Ib) of N2 would be required for the i0 190 km (5500 n.ml.)
flight profile. Since this is not reasonable, discussions were held with the

L-1011 test personnel as to how this leakage might be reduced. The conclusion
was that since much of the L-lOll leakage was due to the many door and window

seals, feed-thrus, and hidden holes in structure, that in the LH2 aircraft, wlth

minimal access doors and careful attention to sealing of holes, this rate might
be reduced to I0 or 15 percent. For purposes of this analysis, the i0 percent
value was assumed.

A schematic of the system is shown in Figure 81. Cabin discharge alr

is used to heat the cryogenic LN2.

The significant surface areas and volumes are:

Surface Area m2 (ft2) Vol. m3 (ft3)

Forward LH2 tank compartment 216.7 (2333) 80.8 (2854)

Aft LH2 tank compartment 220.6 (2375) 71.8 (2536)

Engine supply purge Jacket
(including engine pump and

fuel control) 41.1 (442) 2.8 ( 99)

a
Total 478.4 (5150) 155.4 (54891
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Comparison of the mission profiles showed that the two 4050 km (2187 n.mi.)

trips constituted the more severe requirement with regard to quantity of N2

because of the more frequent climbs and descents. N2 venting is required on
climb with subsequent replenishment being necessary on lescent. On this basis

the following weights were estimated for the system:

L__N2 Required:

Compartment charging 838.7 kg (1849 ib)

Leakage 467.2 (10301

Residual N2 32.2 ( 71)

Total 1338.1 kg (2950 Ib)

System Weights:

LN2 Dewars (60 psig) 117.0 kg ( 258 ib)

Equipment 45.4 ( 1001

Plumbing and shrouds 179.6 (396)

342.0 kg ( 754 lb)
)

+ 10 percent contingency 34.5 76)

Total System 376.5 kg ( 830 Ib)

+ LN2 1338.1 (2950)

Total installed system + gas 1714.6 kg (3780 lb)

The effect on DOC (assuming the LN? costs nothing since it is required

for Hp liquefaction) is equivalent to an increase of 1.53 percent in the
basellne value of 0.99¢/s.km (1.8334C/seat n.ml.). This is clearly unde-

slrableD not only for the direct economic penalty, but also from the point

of view of logistics and servlclng.

An alternate concept was also examined in which the compaztments are

held at a constant absolute pressure. This saves the quantity o¢ N2 required
for charging and recharging but increases the leakage so that th= first

quantity of LN2 required is 1252 kg (2760 ib), almost as much as before.
Further structural penalties would result from designing the tank compartments

to withstand this pressure.

If the internal pressure differential could be reduced to 3.45 kPa

(1/2 psig) the total system weight would be 1556 kg (3430 lb), a 9 percent

reduction. The 3.45 kPa (1/2 psi) might be marginal, however, in preventing
alr ingestion under certain flight conditions.
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The approach selected for the final candidate fuel containment systems
A, B, C, and D consists of air purging and compartment ventilation where

applicable, together with the leak detection at purge exits. This approach is
t further described in 8.6.1. N2 inerting is used, however, in the flexible

foam outer insulation layers of candidates no. 3 and no. 4 as described in 8.6.2.

The need for active inerting and choice of a final concept is dependent on

service experience with an actual LH2 fuel system in a developmental aircraft
program.

• 6.9 Technologv Developments Required

To establish the most promising fuel system design will require component
and system design evaluations followed by detailed laboratory developmental test-

ing. Areas in which this effort should be concentrated include the following:

6.9.1 Negative "g" operation. - The availability of fuel to the tank boost

pumps must be assured at al-lqtimes to prevent engine starvation. The pres-

ent design proposes a pressurized accumulator downstream of the boost pumps.
Other methods, such as double-ended boost pumps, should be investigated in-

asmuch as they may be lighter in weight and more reliable than the proposed
accumulators.

J

6.9.2 Engine starting without boost pumps operating. - If the airplane is
to be self-supporting, the engines and/or the APU must be capable of being

started without the aircraft fuel tank boost pumps operating. Hence, the
minimum inlet fuel pressure for starting the engines and/or the APU should
be determined and compared to available pressure at the engine/APU inlet as

a result of fuel tank pressurization.

6.9.3 Float-operated valve development. - Because of the low density of
liquid hydrogen and permeability of most materials when subjected to hydro-
gen, the design of a float presents problems in sizing and material selec-

tion. The feasibility of floats to operate shutoff valves or switches

should be investigated at an early date since they offer the simplest and

most reliable method of sensing liquid levels.

6.9.4 Fuel quantity gauging. - A neutron radiation fuel gauge should be in-

vestigated for fuel quantity gauging. Neutrons will pass through the walls

f of the fuel tank quite easily and yet are attenuated proportionately to the

density of the hydrogen they pass through. This would allow the gauging
components to be placed external to the tank.

As an alternate, capacitance gauging is feasible and has been used in

LH_ but would require the insertion and support of long probes at multiple
lo_atlons in each tank.

193

1978023142-103



6.9.5 t_U concepts - It is also desirable to make a preliminary investigation of

of APU concepts for the H2 fueled aircraft, including investigation of the

utilizstion of H2 boiloff as the fuel. This investigation would center
around study of £he feasibility of using the external combustion concept to

facilitate the utilization of H2 boiloff.

l

!
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